![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nncn | Unicode version |
Description: A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nncn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 7919 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 2941 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-cnex 6975 ax-resscn 6976 ax-1re 6978 ax-addrcl 6981 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-in 2924 df-ss 2931 df-int 3616 df-inn 7915 |
This theorem is referenced by: nn1m1nn 7932 nn1suc 7933 nnaddcl 7934 nnmulcl 7935 nnsub 7952 nndiv 7954 nndivtr 7955 nnnn0addcl 8212 nn0nnaddcl 8213 elnnnn0 8225 nnnegz 8248 zaddcllempos 8282 zaddcllemneg 8284 nnaddm1cl 8305 elz2 8312 zdiv 8328 zdivadd 8329 zdivmul 8330 nneoor 8340 nneo 8341 divfnzn 8556 qmulz 8558 qaddcl 8570 qnegcl 8571 qmulcl 8572 qreccl 8576 fseq1m1p1 8957 ubmelm1fzo 9082 subfzo0 9097 flqdiv 9163 nn0ennn 9209 expnegap0 9263 expm1t 9283 nnsqcl 9323 nnlesq 9356 sqrt2irr 9878 |
Copyright terms: Public domain | W3C validator |