Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > un0mulcl | Unicode version |
Description: If is closed under multiplication, then so is . (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
un0addcl.1 | |
un0addcl.2 | |
un0mulcl.3 |
Ref | Expression |
---|---|
un0mulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | un0addcl.2 | . . . . 5 | |
2 | 1 | eleq2i 2104 | . . . 4 |
3 | elun 3084 | . . . 4 | |
4 | 2, 3 | bitri 173 | . . 3 |
5 | 1 | eleq2i 2104 | . . . . . 6 |
6 | elun 3084 | . . . . . 6 | |
7 | 5, 6 | bitri 173 | . . . . 5 |
8 | ssun1 3106 | . . . . . . . . 9 | |
9 | 8, 1 | sseqtr4i 2978 | . . . . . . . 8 |
10 | un0mulcl.3 | . . . . . . . 8 | |
11 | 9, 10 | sseldi 2943 | . . . . . . 7 |
12 | 11 | expr 357 | . . . . . 6 |
13 | un0addcl.1 | . . . . . . . . . . 11 | |
14 | 13 | sselda 2945 | . . . . . . . . . 10 |
15 | 14 | mul02d 7389 | . . . . . . . . 9 |
16 | ssun2 3107 | . . . . . . . . . . 11 | |
17 | 16, 1 | sseqtr4i 2978 | . . . . . . . . . 10 |
18 | c0ex 7021 | . . . . . . . . . . 11 | |
19 | 18 | snss 3494 | . . . . . . . . . 10 |
20 | 17, 19 | mpbir 134 | . . . . . . . . 9 |
21 | 15, 20 | syl6eqel 2128 | . . . . . . . 8 |
22 | elsni 3393 | . . . . . . . . . 10 | |
23 | 22 | oveq1d 5527 | . . . . . . . . 9 |
24 | 23 | eleq1d 2106 | . . . . . . . 8 |
25 | 21, 24 | syl5ibrcom 146 | . . . . . . 7 |
26 | 25 | impancom 247 | . . . . . 6 |
27 | 12, 26 | jaodan 710 | . . . . 5 |
28 | 7, 27 | sylan2b 271 | . . . 4 |
29 | 0cnd 7020 | . . . . . . . . . . 11 | |
30 | 29 | snssd 3509 | . . . . . . . . . 10 |
31 | 13, 30 | unssd 3119 | . . . . . . . . 9 |
32 | 1, 31 | syl5eqss 2989 | . . . . . . . 8 |
33 | 32 | sselda 2945 | . . . . . . 7 |
34 | 33 | mul01d 7390 | . . . . . 6 |
35 | 34, 20 | syl6eqel 2128 | . . . . 5 |
36 | elsni 3393 | . . . . . . 7 | |
37 | 36 | oveq2d 5528 | . . . . . 6 |
38 | 37 | eleq1d 2106 | . . . . 5 |
39 | 35, 38 | syl5ibrcom 146 | . . . 4 |
40 | 28, 39 | jaod 637 | . . 3 |
41 | 4, 40 | syl5bi 141 | . 2 |
42 | 41 | impr 361 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wo 629 wceq 1243 wcel 1393 cun 2915 wss 2917 csn 3375 (class class class)co 5512 cc 6887 cc0 6889 cmul 6894 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-setind 4262 ax-resscn 6976 ax-1cn 6977 ax-icn 6979 ax-addcl 6980 ax-addrcl 6981 ax-mulcl 6982 ax-addcom 6984 ax-mulcom 6985 ax-addass 6986 ax-distr 6988 ax-i2m1 6989 ax-0id 6992 ax-rnegex 6993 ax-cnre 6995 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-iota 4867 df-fun 4904 df-fv 4910 df-riota 5468 df-ov 5515 df-oprab 5516 df-mpt2 5517 df-sub 7184 |
This theorem is referenced by: nn0mulcl 8218 |
Copyright terms: Public domain | W3C validator |