![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseqtr4i | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.) |
Ref | Expression |
---|---|
sseqtr4.1 |
![]() ![]() ![]() ![]() |
sseqtr4.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sseqtr4i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtr4.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseqtr4.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | eqcomi 2044 |
. 2
![]() ![]() ![]() ![]() |
4 | 1, 3 | sseqtri 2977 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-in 2924 df-ss 2931 |
This theorem is referenced by: eqimss2i 3000 difdif2ss 3194 snsspr1 3512 snsspr2 3513 snsstp1 3514 snsstp2 3515 snsstp3 3516 prsstp12 3517 prsstp13 3518 prsstp23 3519 iunxdif2 3705 sssucid 4152 opabssxp 4414 dmresi 4661 cnvimass 4688 ssrnres 4763 cnvcnv 4773 cnvssrndm 4842 dmmpt2ssx 5825 sucinc 6025 ressxr 7069 ltrelxr 7080 nnssnn0 8184 un0addcl 8215 un0mulcl 8216 fzossnn0 9031 |
Copyright terms: Public domain | W3C validator |