ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 7019
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7017 . 2  |-  0  e.  CC
21elexi 2567 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1393   _Vcvv 2557   CCcc 6885   0cc0 6887
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022  ax-1cn 6975  ax-icn 6977  ax-addcl 6978  ax-mulcl 6980  ax-i2m1 6987
This theorem depends on definitions:  df-bi 110  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by:  elnn0  8181  nn0ex  8185  un0mulcl  8214  nn0ssz  8261  nn0ind-raph  8353  iser0f  9225  iserige0  9836
  Copyright terms: Public domain W3C validator