ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6sseq Unicode version

Theorem syl6sseq 2991
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
syl6sseq.1  |-  ( ph  ->  A  C_  B )
syl6sseq.2  |-  B  =  C
Assertion
Ref Expression
syl6sseq  |-  ( ph  ->  A  C_  C )

Proof of Theorem syl6sseq
StepHypRef Expression
1 syl6sseq.1 . 2  |-  ( ph  ->  A  C_  B )
2 syl6sseq.2 . . 3  |-  B  =  C
32sseq2i 2970 . 2  |-  ( A 
C_  B  <->  A  C_  C
)
41, 3sylib 127 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    C_ wss 2917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931
This theorem is referenced by:  syl6sseqr  2992  onintonm  4243  relrelss  4844  iotanul  4882  foimacnv  5144  cauappcvgprlemladdru  6754
  Copyright terms: Public domain W3C validator