ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqbrrdva Unicode version

Theorem eqbrrdva 4505
Description: Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
Hypotheses
Ref Expression
eqbrrdva.1  |-  ( ph  ->  A  C_  ( C  X.  D ) )
eqbrrdva.2  |-  ( ph  ->  B  C_  ( C  X.  D ) )
eqbrrdva.3  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
Assertion
Ref Expression
eqbrrdva  |-  ( ph  ->  A  =  B )
Distinct variable groups:    x, y, A   
x, B, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)

Proof of Theorem eqbrrdva
StepHypRef Expression
1 eqbrrdva.1 . . . 4  |-  ( ph  ->  A  C_  ( C  X.  D ) )
2 xpss 4446 . . . 4  |-  ( C  X.  D )  C_  ( _V  X.  _V )
31, 2syl6ss 2957 . . 3  |-  ( ph  ->  A  C_  ( _V  X.  _V ) )
4 df-rel 4352 . . 3  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
53, 4sylibr 137 . 2  |-  ( ph  ->  Rel  A )
6 eqbrrdva.2 . . . 4  |-  ( ph  ->  B  C_  ( C  X.  D ) )
76, 2syl6ss 2957 . . 3  |-  ( ph  ->  B  C_  ( _V  X.  _V ) )
8 df-rel 4352 . . 3  |-  ( Rel 
B  <->  B  C_  ( _V 
X.  _V ) )
97, 8sylibr 137 . 2  |-  ( ph  ->  Rel  B )
101ssbrd 3805 . . . 4  |-  ( ph  ->  ( x A y  ->  x ( C  X.  D ) y ) )
11 brxp 4375 . . . 4  |-  ( x ( C  X.  D
) y  <->  ( x  e.  C  /\  y  e.  D ) )
1210, 11syl6ib 150 . . 3  |-  ( ph  ->  ( x A y  ->  ( x  e.  C  /\  y  e.  D ) ) )
136ssbrd 3805 . . . 4  |-  ( ph  ->  ( x B y  ->  x ( C  X.  D ) y ) )
1413, 11syl6ib 150 . . 3  |-  ( ph  ->  ( x B y  ->  ( x  e.  C  /\  y  e.  D ) ) )
15 eqbrrdva.3 . . . 4  |-  ( (
ph  /\  x  e.  C  /\  y  e.  D
)  ->  ( x A y  <->  x B
y ) )
16153expib 1107 . . 3  |-  ( ph  ->  ( ( x  e.  C  /\  y  e.  D )  ->  (
x A y  <->  x B
y ) ) )
1712, 14, 16pm5.21ndd 621 . 2  |-  ( ph  ->  ( x A y  <-> 
x B y ) )
185, 9, 17eqbrrdv 4437 1  |-  ( ph  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   _Vcvv 2557    C_ wss 2917   class class class wbr 3764    X. cxp 4343   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator