ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel3 Unicode version

Theorem dfrel3 4778
Description: Alternate definition of relation. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
dfrel3  |-  ( Rel 
R  <->  ( R  |`  _V )  =  R
)

Proof of Theorem dfrel3
StepHypRef Expression
1 dfrel2 4771 . 2  |-  ( Rel 
R  <->  `' `' R  =  R
)
2 cnvcnv2 4774 . . 3  |-  `' `' R  =  ( R  |` 
_V )
32eqeq1i 2047 . 2  |-  ( `' `' R  =  R  <->  ( R  |`  _V )  =  R )
41, 3bitri 173 1  |-  ( Rel 
R  <->  ( R  |`  _V )  =  R
)
Colors of variables: wff set class
Syntax hints:    <-> wb 98    = wceq 1243   _Vcvv 2557   `'ccnv 4344    |` cres 4347   Rel wrel 4350
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-res 4357
This theorem is referenced by:  cocnvcnv2  4832  f1ovi  5165
  Copyright terms: Public domain W3C validator