Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc Structured version   Unicode version

Theorem bj-vprc 9351
Description: vprc 3879 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc  _V  _V

Proof of Theorem bj-vprc
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 9350 . . 3
2 vex 2554 . . . . . . 7 
_V
32tbt 236 . . . . . 6 
_V
43albii 1356 . . . . 5  _V
5 dfcleq 2031 . . . . 5  _V  _V
64, 5bitr4i 176 . . . 4  _V
76exbii 1493 . . 3  _V
81, 7mtbi 594 . 2  _V
9 isset 2555 . 2  _V  _V  _V
108, 9mtbir 595 1  _V  _V
Colors of variables: wff set class
Syntax hints:   wn 3   wb 98  wal 1240   wceq 1242  wex 1378   wcel 1390   _Vcvv 2551
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019  ax-bdn 9272  ax-bdel 9276  ax-bdsep 9339
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553
This theorem is referenced by:  bj-nvel  9352  bj-vnex  9353  bj-intexr  9363  bj-intnexr  9364
  Copyright terms: Public domain W3C validator