Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vprc Structured version   GIF version

Theorem bj-vprc 7119
 Description: vprc 3862 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-vprc ¬ V V

Proof of Theorem bj-vprc
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-nalset 7118 . . 3 ¬ xy y x
2 vex 2538 . . . . . . 7 y V
32tbt 236 . . . . . 6 (y x ↔ (y xy V))
43albii 1339 . . . . 5 (y y xy(y xy V))
5 dfcleq 2016 . . . . 5 (x = V ↔ y(y xy V))
64, 5bitr4i 176 . . . 4 (y y xx = V)
76exbii 1478 . . 3 (xy y xx x = V)
81, 7mtbi 582 . 2 ¬ x x = V
9 isset 2539 . 2 (V V ↔ x x = V)
108, 9mtbir 583 1 ¬ V V
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ↔ wb 98  ∀wal 1226   = wceq 1228  ∃wex 1362   ∈ wcel 1374  Vcvv 2535 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-4 1381  ax-13 1385  ax-14 1386  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-ext 2004  ax-bdn 7044  ax-bdel 7048  ax-bdsep 7111 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1234  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-v 2537 This theorem is referenced by:  bj-nvel  7120  bj-vnex  7121  bj-intexr  7131  bj-intnexr  7132
 Copyright terms: Public domain W3C validator