ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abid2f Unicode version

Theorem abid2f 2199
Description: A simplification of class abstraction. Theorem 5.2 of [Quine] p. 35. (Contributed by NM, 5-Sep-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
abid2f.1  F/_
Assertion
Ref Expression
abid2f  {  |  }

Proof of Theorem abid2f
StepHypRef Expression
1 abid2f.1 . . . . 5  F/_
2 nfab1 2177 . . . . 5  F/_ {  |  }
31, 2cleqf 2198 . . . 4  {  |  }  {  |  }
4 abid 2025 . . . . . 6  {  |  }
54bibi2i 216 . . . . 5 
{  |  }
65albii 1356 . . . 4  {  |  }
73, 6bitri 173 . . 3  {  |  }
8 biid 160 . . 3
97, 8mpgbir 1339 . 2  {  |  }
109eqcomi 2041 1  {  |  }
Colors of variables: wff set class
Syntax hints:   wb 98  wal 1240   wceq 1242   wcel 1390   {cab 2023   F/_wnfc 2162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator