Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2reuswapdc | Unicode version |
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
2reuswapdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2314 | . . 3 | |
2 | 1 | ralbii 2330 | . 2 |
3 | df-ral 2311 | . . . 4 | |
4 | moanimv 1975 | . . . . 5 | |
5 | 4 | albii 1359 | . . . 4 |
6 | 3, 5 | bitr4i 176 | . . 3 |
7 | df-reu 2313 | . . . . . 6 | |
8 | r19.42v 2467 | . . . . . . . . 9 | |
9 | df-rex 2312 | . . . . . . . . 9 | |
10 | 8, 9 | bitr3i 175 | . . . . . . . 8 |
11 | an12 495 | . . . . . . . . 9 | |
12 | 11 | exbii 1496 | . . . . . . . 8 |
13 | 10, 12 | bitri 173 | . . . . . . 7 |
14 | 13 | eubii 1909 | . . . . . 6 |
15 | 7, 14 | bitri 173 | . . . . 5 |
16 | 2euswapdc 1991 | . . . . 5 DECID | |
17 | 15, 16 | syl7bi 154 | . . . 4 DECID |
18 | df-reu 2313 | . . . . . 6 | |
19 | r19.42v 2467 | . . . . . . . 8 | |
20 | df-rex 2312 | . . . . . . . 8 | |
21 | 19, 20 | bitr3i 175 | . . . . . . 7 |
22 | 21 | eubii 1909 | . . . . . 6 |
23 | 18, 22 | bitri 173 | . . . . 5 |
24 | 23 | imbi2i 215 | . . . 4 |
25 | 17, 24 | syl6ibr 151 | . . 3 DECID |
26 | 6, 25 | syl5bi 141 | . 2 DECID |
27 | 2, 26 | syl5bi 141 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 DECID wdc 742 wal 1241 wex 1381 wcel 1393 weu 1900 wmo 1901 wral 2306 wrex 2307 wreu 2308 wrmo 2309 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-ral 2311 df-rex 2312 df-reu 2313 df-rmo 2314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |