Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdceq Unicode version

Theorem bdceq 9962
Description: Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdceq.1  |-  A  =  B
Assertion
Ref Expression
bdceq  |-  (BOUNDED  A  <-> BOUNDED  B )

Proof of Theorem bdceq
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdceq.1 . . . . 5  |-  A  =  B
21eleq2i 2104 . . . 4  |-  ( x  e.  A  <->  x  e.  B )
32bdeq 9943 . . 3  |-  (BOUNDED  x  e.  A  <-> BOUNDED  x  e.  B )
43albii 1359 . 2  |-  ( A. xBOUNDED  x  e.  A  <->  A. xBOUNDED  x  e.  B )
5 df-bdc 9961 . 2  |-  (BOUNDED  A  <->  A. xBOUNDED  x  e.  A )
6 df-bdc 9961 . 2  |-  (BOUNDED  B  <->  A. xBOUNDED  x  e.  B )
74, 5, 63bitr4i 201 1  |-  (BOUNDED  A  <-> BOUNDED  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393  BOUNDED wbd 9932  BOUNDED wbdc 9960
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-17 1419  ax-ial 1427  ax-ext 2022  ax-bd0 9933
This theorem depends on definitions:  df-bi 110  df-cleq 2033  df-clel 2036  df-bdc 9961
This theorem is referenced by:  bdceqi  9963
  Copyright terms: Public domain W3C validator