Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dveeq1 | Unicode version |
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
dveeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveeq2 1696 | . 2 | |
2 | equcom 1593 | . 2 | |
3 | 2 | albii 1359 | . 2 |
4 | 1, 2, 3 | 3imtr3g 193 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sbal2 1898 |
Copyright terms: Public domain | W3C validator |