ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dveeq1 Unicode version

Theorem dveeq1 1895
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
dveeq1  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Distinct variable group:    x, z

Proof of Theorem dveeq1
StepHypRef Expression
1 dveeq2 1696 . 2  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
2 equcom 1593 . 2  |-  ( z  =  y  <->  y  =  z )
32albii 1359 . 2  |-  ( A. x  z  =  y  <->  A. x  y  =  z )
41, 2, 33imtr3g 193 1  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  sbal2  1898
  Copyright terms: Public domain W3C validator