Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euabsn2 | Unicode version |
Description: Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
euabsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 1903 | . 2 | |
2 | abeq1 2147 | . . . 4 | |
3 | velsn 3392 | . . . . . 6 | |
4 | 3 | bibi2i 216 | . . . . 5 |
5 | 4 | albii 1359 | . . . 4 |
6 | 2, 5 | bitri 173 | . . 3 |
7 | 6 | exbii 1496 | . 2 |
8 | 1, 7 | bitr4i 176 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wal 1241 wceq 1243 wex 1381 wcel 1393 weu 1900 cab 2026 csn 3375 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-sn 3381 |
This theorem is referenced by: euabsn 3440 reusn 3441 absneu 3442 uniintabim 3652 euabex 3961 nfvres 5206 eusvobj2 5498 |
Copyright terms: Public domain | W3C validator |