ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mo3h Unicode version

Theorem mo3h 1953
Description: Alternate definition of "at most one." Definition of [BellMachover] p. 460, except that definition has the side condition that  y not occur in  ph in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.)
Hypothesis
Ref Expression
mo3h.1  |-  ( ph  ->  A. y ph )
Assertion
Ref Expression
mo3h  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem mo3h
StepHypRef Expression
1 mo3h.1 . . . . . . 7  |-  ( ph  ->  A. y ph )
21nfi 1351 . . . . . 6  |-  F/ y
ph
32eu2 1944 . . . . 5  |-  ( E! x ph  <->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
43imbi2i 215 . . . 4  |-  ( ( E. x ph  ->  E! x ph )  <->  ( E. x ph  ->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) ) )
5 df-mo 1904 . . . 4  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
6 anclb 302 . . . 4  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  <->  ( E. x ph  ->  ( E. x ph  /\  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) ) )
74, 5, 63bitr4i 201 . . 3  |-  ( E* x ph  <->  ( E. x ph  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
8 19.38 1566 . . . . 5  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  ->  A. x ( ph  ->  A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
9219.21 1475 . . . . . 6  |-  ( A. y ( ph  ->  ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  <->  ( ph  ->  A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
109albii 1359 . . . . 5  |-  ( A. x A. y ( ph  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  A. x
( ph  ->  A. y
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
118, 10sylibr 137 . . . 4  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  ->  A. x A. y (
ph  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) ) )
12 anabs5 507 . . . . . 6  |-  ( (
ph  /\  ( ph  /\ 
[ y  /  x ] ph ) )  <->  ( ph  /\ 
[ y  /  x ] ph ) )
13 pm3.31 249 . . . . . 6  |-  ( (
ph  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )  ->  ( ( ph  /\  ( ph  /\  [
y  /  x ] ph ) )  ->  x  =  y ) )
1412, 13syl5bir 142 . . . . 5  |-  ( (
ph  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )  ->  ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
15142alimi 1345 . . . 4  |-  ( A. x A. y ( ph  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )
1611, 15syl 14 . . 3  |-  ( ( E. x ph  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )
177, 16sylbi 114 . 2  |-  ( E* x ph  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
183simplbi2com 1333 . . 3  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( E. x ph  ->  E! x ph ) )
1918, 5sylibr 137 . 2  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E* x ph )
2017, 19impbii 117 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241   E.wex 1381   [wsb 1645   E!weu 1900   E*wmo 1901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904
This theorem is referenced by:  mo3  1954  mo2dc  1955  mo4f  1960  moim  1964  moimv  1966  moanim  1974  mopick  1978
  Copyright terms: Public domain W3C validator