ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu8 Unicode version

Theorem reu8 2737
Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
reu8  |-  ( E! x  e.  A  ph  <->  E. x  e.  A  (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21cbvreuv 2535 . 2  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
3 reu6 2730 . 2  |-  ( E! y  e.  A  ps  <->  E. x  e.  A  A. y  e.  A  ( ps 
<->  y  =  x ) )
4 dfbi2 368 . . . . 5  |-  ( ( ps  <->  y  =  x )  <->  ( ( ps 
->  y  =  x
)  /\  ( y  =  x  ->  ps )
) )
54ralbii 2330 . . . 4  |-  ( A. y  e.  A  ( ps 
<->  y  =  x )  <->  A. y  e.  A  ( ( ps  ->  y  =  x )  /\  ( y  =  x  ->  ps ) ) )
6 ancom 253 . . . . . 6  |-  ( (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) )  <->  ( A. y  e.  A  ( ps  ->  x  =  y )  /\  ph ) )
7 equcom 1593 . . . . . . . . . 10  |-  ( x  =  y  <->  y  =  x )
87imbi2i 215 . . . . . . . . 9  |-  ( ( ps  ->  x  =  y )  <->  ( ps  ->  y  =  x ) )
98ralbii 2330 . . . . . . . 8  |-  ( A. y  e.  A  ( ps  ->  x  =  y )  <->  A. y  e.  A  ( ps  ->  y  =  x ) )
109a1i 9 . . . . . . 7  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ps  ->  x  =  y )  <->  A. y  e.  A  ( ps  ->  y  =  x ) ) )
11 biimt 230 . . . . . . . 8  |-  ( x  e.  A  ->  ( ph 
<->  ( x  e.  A  ->  ph ) ) )
12 df-ral 2311 . . . . . . . . 9  |-  ( A. y  e.  A  (
y  =  x  ->  ps )  <->  A. y ( y  e.  A  ->  (
y  =  x  ->  ps ) ) )
13 bi2.04 237 . . . . . . . . . 10  |-  ( ( y  e.  A  -> 
( y  =  x  ->  ps ) )  <-> 
( y  =  x  ->  ( y  e.  A  ->  ps )
) )
1413albii 1359 . . . . . . . . 9  |-  ( A. y ( y  e.  A  ->  ( y  =  x  ->  ps )
)  <->  A. y ( y  =  x  ->  (
y  e.  A  ->  ps ) ) )
15 vex 2560 . . . . . . . . . 10  |-  x  e. 
_V
16 eleq1 2100 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
1716, 1imbi12d 223 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
1817bicomd 129 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( y  e.  A  ->  ps )  <->  ( x  e.  A  ->  ph )
) )
1918equcoms 1594 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( y  e.  A  ->  ps )  <->  ( x  e.  A  ->  ph )
) )
2015, 19ceqsalv 2584 . . . . . . . . 9  |-  ( A. y ( y  =  x  ->  ( y  e.  A  ->  ps )
)  <->  ( x  e.  A  ->  ph ) )
2112, 14, 203bitrri 196 . . . . . . . 8  |-  ( ( x  e.  A  ->  ph )  <->  A. y  e.  A  ( y  =  x  ->  ps ) )
2211, 21syl6bb 185 . . . . . . 7  |-  ( x  e.  A  ->  ( ph 
<-> 
A. y  e.  A  ( y  =  x  ->  ps ) ) )
2310, 22anbi12d 442 . . . . . 6  |-  ( x  e.  A  ->  (
( A. y  e.  A  ( ps  ->  x  =  y )  /\  ph )  <->  ( A. y  e.  A  ( ps  ->  y  =  x )  /\  A. y  e.  A  ( y  =  x  ->  ps )
) ) )
246, 23syl5bb 181 . . . . 5  |-  ( x  e.  A  ->  (
( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) )  <->  ( A. y  e.  A  ( ps  ->  y  =  x )  /\  A. y  e.  A  ( y  =  x  ->  ps )
) ) )
25 r19.26 2441 . . . . 5  |-  ( A. y  e.  A  (
( ps  ->  y  =  x )  /\  (
y  =  x  ->  ps ) )  <->  ( A. y  e.  A  ( ps  ->  y  =  x )  /\  A. y  e.  A  ( y  =  x  ->  ps )
) )
2624, 25syl6rbbr 188 . . . 4  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ( ps  ->  y  =  x )  /\  ( y  =  x  ->  ps ) )  <-> 
( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) ) )
275, 26syl5bb 181 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ( ps  <->  y  =  x )  <->  ( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) ) )
2827rexbiia 2339 . 2  |-  ( E. x  e.  A  A. y  e.  A  ( ps 
<->  y  =  x )  <->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
292, 3, 283bitri 195 1  |-  ( E! x  e.  A  ph  <->  E. x  e.  A  (
ph  /\  A. y  e.  A  ( ps  ->  x  =  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    e. wcel 1393   A.wral 2306   E.wrex 2307   E!wreu 2308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator