Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpow Unicode version

Theorem zfpow 3928
 Description: Axiom of Power Sets expressed with the fewest number of different variables. (Contributed by NM, 14-Aug-2003.)
Assertion
Ref Expression
zfpow
Distinct variable group:   ,,

Proof of Theorem zfpow
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-pow 3927 . 2
2 elequ1 1600 . . . . . . 7
3 elequ1 1600 . . . . . . 7
42, 3imbi12d 223 . . . . . 6
54cbvalv 1794 . . . . 5
65imbi1i 227 . . . 4
76albii 1359 . . 3
87exbii 1496 . 2
91, 8mpbi 133 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-13 1404  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-pow 3927 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  el  3931
 Copyright terms: Public domain W3C validator