Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsalh Structured version   Unicode version

Theorem equsalh 1611
 Description: A useful equivalence related to substitution. New proofs should use equsal 1612 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
equsalh.1
equsalh.2
Assertion
Ref Expression
equsalh

Proof of Theorem equsalh
StepHypRef Expression
1 equsalh.2 . . . . 5
2 equsalh.1 . . . . . 6
3219.3h 1442 . . . . 5
41, 3syl6bbr 187 . . . 4
54pm5.74i 169 . . 3
65albii 1356 . 2
72a1d 22 . . . 4
82, 7alrimih 1355 . . 3
9 ax9o 1585 . . 3
108, 9impbii 117 . 2
116, 10bitr4i 176 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98  wal 1240 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-i9 1420  ax-ial 1424 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  sb6x  1659  dvelimfALT2  1695  dvelimALT  1883  dvelimfv  1884  dvelimor  1891
 Copyright terms: Public domain W3C validator