Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfiin2g | Unicode version |
Description: Alternate definition of indexed intersection when is a set. (Contributed by Jeff Hankins, 27-Aug-2009.) |
Ref | Expression |
---|---|
dfiin2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2311 | . . . 4 | |
2 | df-ral 2311 | . . . . . 6 | |
3 | eleq2 2101 | . . . . . . . . . . . . 13 | |
4 | 3 | biimprcd 149 | . . . . . . . . . . . 12 |
5 | 4 | alrimiv 1754 | . . . . . . . . . . 11 |
6 | eqid 2040 | . . . . . . . . . . . 12 | |
7 | eqeq1 2046 | . . . . . . . . . . . . . 14 | |
8 | 7, 3 | imbi12d 223 | . . . . . . . . . . . . 13 |
9 | 8 | spcgv 2640 | . . . . . . . . . . . 12 |
10 | 6, 9 | mpii 39 | . . . . . . . . . . 11 |
11 | 5, 10 | impbid2 131 | . . . . . . . . . 10 |
12 | 11 | imim2i 12 | . . . . . . . . 9 |
13 | 12 | pm5.74d 171 | . . . . . . . 8 |
14 | 13 | alimi 1344 | . . . . . . 7 |
15 | albi 1357 | . . . . . . 7 | |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 2, 16 | sylbi 114 | . . . . 5 |
18 | df-ral 2311 | . . . . . . . 8 | |
19 | 18 | albii 1359 | . . . . . . 7 |
20 | alcom 1367 | . . . . . . 7 | |
21 | 19, 20 | bitr4i 176 | . . . . . 6 |
22 | r19.23v 2425 | . . . . . . . 8 | |
23 | vex 2560 | . . . . . . . . . 10 | |
24 | eqeq1 2046 | . . . . . . . . . . 11 | |
25 | 24 | rexbidv 2327 | . . . . . . . . . 10 |
26 | 23, 25 | elab 2687 | . . . . . . . . 9 |
27 | 26 | imbi1i 227 | . . . . . . . 8 |
28 | 22, 27 | bitr4i 176 | . . . . . . 7 |
29 | 28 | albii 1359 | . . . . . 6 |
30 | 19.21v 1753 | . . . . . . 7 | |
31 | 30 | albii 1359 | . . . . . 6 |
32 | 21, 29, 31 | 3bitr3ri 200 | . . . . 5 |
33 | 17, 32 | syl6bb 185 | . . . 4 |
34 | 1, 33 | syl5bb 181 | . . 3 |
35 | 34 | abbidv 2155 | . 2 |
36 | df-iin 3660 | . 2 | |
37 | df-int 3616 | . 2 | |
38 | 35, 36, 37 | 3eqtr4g 2097 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wceq 1243 wcel 1393 cab 2026 wral 2306 wrex 2307 cint 3615 ciin 3658 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-int 3616 df-iin 3660 |
This theorem is referenced by: dfiin2 3692 iinexgm 3908 dfiin3g 4590 fniinfv 5231 |
Copyright terms: Public domain | W3C validator |