Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2sb6 | Unicode version |
Description: Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2sb6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1766 | . 2 | |
2 | 19.21v 1753 | . . . 4 | |
3 | impexp 250 | . . . . 5 | |
4 | 3 | albii 1359 | . . . 4 |
5 | sb6 1766 | . . . . 5 | |
6 | 5 | imbi2i 215 | . . . 4 |
7 | 2, 4, 6 | 3bitr4ri 202 | . . 3 |
8 | 7 | albii 1359 | . 2 |
9 | 1, 8 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-sb 1646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |