Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcom2v | Unicode version |
Description: Lemma for proving sbcom2 1863. It is the same as sbcom2 1863 but with additional distinct variable constraints on and , and on and . (Contributed by Jim Kingdon, 19-Feb-2018.) |
Ref | Expression |
---|---|
sbcom2v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 1367 | . . 3 | |
2 | bi2.04 237 | . . . . . 6 | |
3 | 2 | albii 1359 | . . . . 5 |
4 | 19.21v 1753 | . . . . 5 | |
5 | 3, 4 | bitri 173 | . . . 4 |
6 | 5 | albii 1359 | . . 3 |
7 | 19.21v 1753 | . . . 4 | |
8 | 7 | albii 1359 | . . 3 |
9 | 1, 6, 8 | 3bitr3i 199 | . 2 |
10 | sb6 1766 | . . 3 | |
11 | sb6 1766 | . . . . 5 | |
12 | 11 | imbi2i 215 | . . . 4 |
13 | 12 | albii 1359 | . . 3 |
14 | 10, 13 | bitri 173 | . 2 |
15 | sb6 1766 | . . 3 | |
16 | sb6 1766 | . . . . 5 | |
17 | 16 | imbi2i 215 | . . . 4 |
18 | 17 | albii 1359 | . . 3 |
19 | 15, 18 | bitri 173 | . 2 |
20 | 9, 14, 19 | 3bitr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-sb 1646 |
This theorem is referenced by: sbcom2v2 1862 |
Copyright terms: Public domain | W3C validator |