ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqrelrel Unicode version

Theorem eqrelrel 4441
Description: Extensionality principle for ordered triples, analogous to eqrel 4429. Use relrelss 4844 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
eqrelrel  |-  ( ( A  u.  B ) 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z

Proof of Theorem eqrelrel
StepHypRef Expression
1 unss 3117 . 2  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  <->  ( A  u.  B )  C_  (
( _V  X.  _V )  X.  _V ) )
2 ssrelrel 4440 . . . 4  |-  ( A 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  C_  B 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
3 ssrelrel 4440 . . . 4  |-  ( B 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( B  C_  A 
<-> 
A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
42, 3bi2anan9 538 . . 3  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  ->  ( ( A  C_  B  /\  B  C_  A )  <->  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) ) )
5 eqss 2960 . . 3  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
6 2albiim 1377 . . . . 5  |-  ( A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  <->  <. <. x ,  y >. ,  z >.  e.  B
)  <->  ( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
76albii 1359 . . . 4  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  <->  <. <. x ,  y
>. ,  z >.  e.  B )  <->  A. x
( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
8 19.26 1370 . . . 4  |-  ( A. x ( A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. y A. z (
<. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) )  <-> 
( A. x A. y A. z ( <. <. x ,  y >. ,  z >.  e.  A  -> 
<. <. x ,  y
>. ,  z >.  e.  B )  /\  A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
97, 8bitri 173 . . 3  |-  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  <->  <. <. x ,  y
>. ,  z >.  e.  B )  <->  ( A. x A. y A. z
( <. <. x ,  y
>. ,  z >.  e.  A  ->  <. <. x ,  y >. ,  z
>.  e.  B )  /\  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  B  ->  <. <. x ,  y >. ,  z
>.  e.  A ) ) )
104, 5, 93bitr4g 212 . 2  |-  ( ( A  C_  ( ( _V  X.  _V )  X. 
_V )  /\  B  C_  ( ( _V  X.  _V )  X.  _V )
)  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
111, 10sylbir 125 1  |-  ( ( A  u.  B ) 
C_  ( ( _V 
X.  _V )  X.  _V )  ->  ( A  =  B  <->  A. x A. y A. z ( <. <. x ,  y >. ,  z
>.  e.  A  <->  <. <. x ,  y >. ,  z
>.  e.  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243    e. wcel 1393   _Vcvv 2557    u. cun 2915    C_ wss 2917   <.cop 3378    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819  df-xp 4351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator