ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8euh Structured version   Unicode version

Theorem sb8euh 1920
Description: Variable substitution in uniqueness quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
Hypothesis
Ref Expression
sb8euh.1
Assertion
Ref Expression
sb8euh

Proof of Theorem sb8euh
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-17 1416 . . . . 5
21sb8h 1731 . . . 4
3 sbbi 1830 . . . . . 6
4 sb8euh.1 . . . . . . . 8
54hbsb 1820 . . . . . . 7
6 equsb3 1822 . . . . . . . 8
7 ax-17 1416 . . . . . . . 8
86, 7hbxfrbi 1358 . . . . . . 7
95, 8hbbi 1437 . . . . . 6
103, 9hbxfrbi 1358 . . . . 5
11 ax-17 1416 . . . . 5
12 sbequ 1718 . . . . 5
1310, 11, 12cbvalh 1633 . . . 4
14 equsb3 1822 . . . . . 6
1514sblbis 1831 . . . . 5
1615albii 1356 . . . 4
172, 13, 163bitri 195 . . 3
1817exbii 1493 . 2
19 df-eu 1900 . 2
20 df-eu 1900 . 2
2118, 19, 203bitr4i 201 1
Colors of variables: wff set class
Syntax hints:   wi 4   wb 98  wal 1240  wex 1378  wsb 1642  weu 1897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-eu 1900
This theorem is referenced by:  eu1  1922
  Copyright terms: Public domain W3C validator