ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5 Unicode version

Theorem peano5 4321
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 4326. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
peano5  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A

Proof of Theorem peano5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfom3 4315 . . 3  |-  om  =  |^| { y  |  (
(/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }
2 peano1 4317 . . . . . . . 8  |-  (/)  e.  om
3 elin 3126 . . . . . . . 8  |-  ( (/)  e.  ( om  i^i  A
)  <->  ( (/)  e.  om  /\  (/)  e.  A ) )
42, 3mpbiran 847 . . . . . . 7  |-  ( (/)  e.  ( om  i^i  A
)  <->  (/)  e.  A )
54biimpri 124 . . . . . 6  |-  ( (/)  e.  A  ->  (/)  e.  ( om  i^i  A ) )
6 peano2 4318 . . . . . . . . . . . 12  |-  ( x  e.  om  ->  suc  x  e.  om )
76adantr 261 . . . . . . . . . . 11  |-  ( ( x  e.  om  /\  x  e.  A )  ->  suc  x  e.  om )
87a1i 9 . . . . . . . . . 10  |-  ( ( x  e.  om  ->  ( x  e.  A  ->  suc  x  e.  A ) )  ->  ( (
x  e.  om  /\  x  e.  A )  ->  suc  x  e.  om ) )
9 pm3.31 249 . . . . . . . . . 10  |-  ( ( x  e.  om  ->  ( x  e.  A  ->  suc  x  e.  A ) )  ->  ( (
x  e.  om  /\  x  e.  A )  ->  suc  x  e.  A
) )
108, 9jcad 291 . . . . . . . . 9  |-  ( ( x  e.  om  ->  ( x  e.  A  ->  suc  x  e.  A ) )  ->  ( (
x  e.  om  /\  x  e.  A )  ->  ( suc  x  e. 
om  /\  suc  x  e.  A ) ) )
1110alimi 1344 . . . . . . . 8  |-  ( A. x ( x  e. 
om  ->  ( x  e.  A  ->  suc  x  e.  A ) )  ->  A. x ( ( x  e.  om  /\  x  e.  A )  ->  ( suc  x  e.  om  /\  suc  x  e.  A ) ) )
12 df-ral 2311 . . . . . . . 8  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  <->  A. x ( x  e. 
om  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
13 elin 3126 . . . . . . . . . 10  |-  ( x  e.  ( om  i^i  A )  <->  ( x  e. 
om  /\  x  e.  A ) )
14 elin 3126 . . . . . . . . . 10  |-  ( suc  x  e.  ( om 
i^i  A )  <->  ( suc  x  e.  om  /\  suc  x  e.  A )
)
1513, 14imbi12i 228 . . . . . . . . 9  |-  ( ( x  e.  ( om 
i^i  A )  ->  suc  x  e.  ( om 
i^i  A ) )  <-> 
( ( x  e. 
om  /\  x  e.  A )  ->  ( suc  x  e.  om  /\  suc  x  e.  A ) ) )
1615albii 1359 . . . . . . . 8  |-  ( A. x ( x  e.  ( om  i^i  A
)  ->  suc  x  e.  ( om  i^i  A
) )  <->  A. x
( ( x  e. 
om  /\  x  e.  A )  ->  ( suc  x  e.  om  /\  suc  x  e.  A ) ) )
1711, 12, 163imtr4i 190 . . . . . . 7  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  A. x ( x  e.  ( om  i^i  A )  ->  suc  x  e.  ( om  i^i  A
) ) )
18 df-ral 2311 . . . . . . 7  |-  ( A. x  e.  ( om  i^i  A ) suc  x  e.  ( om  i^i  A
)  <->  A. x ( x  e.  ( om  i^i  A )  ->  suc  x  e.  ( om  i^i  A
) ) )
1917, 18sylibr 137 . . . . . 6  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  A. x  e.  ( om  i^i  A ) suc  x  e.  ( om  i^i  A ) )
205, 19anim12i 321 . . . . 5  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  ( (/)  e.  ( om  i^i  A )  /\  A. x  e.  ( om  i^i  A
) suc  x  e.  ( om  i^i  A ) ) )
21 omex 4316 . . . . . . 7  |-  om  e.  _V
2221inex1 3891 . . . . . 6  |-  ( om 
i^i  A )  e. 
_V
23 eleq2 2101 . . . . . . 7  |-  ( y  =  ( om  i^i  A )  ->  ( (/)  e.  y  <->  (/) 
e.  ( om  i^i  A ) ) )
24 eleq2 2101 . . . . . . . 8  |-  ( y  =  ( om  i^i  A )  ->  ( suc  x  e.  y  <->  suc  x  e.  ( om  i^i  A
) ) )
2524raleqbi1dv 2513 . . . . . . 7  |-  ( y  =  ( om  i^i  A )  ->  ( A. x  e.  y  suc  x  e.  y  <->  A. x  e.  ( om  i^i  A
) suc  x  e.  ( om  i^i  A ) ) )
2623, 25anbi12d 442 . . . . . 6  |-  ( y  =  ( om  i^i  A )  ->  ( ( (/) 
e.  y  /\  A. x  e.  y  suc  x  e.  y )  <->  (
(/)  e.  ( om  i^i  A )  /\  A. x  e.  ( om  i^i  A ) suc  x  e.  ( om  i^i  A
) ) ) )
2722, 26elab 2687 . . . . 5  |-  ( ( om  i^i  A )  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  <->  ( (/)  e.  ( om  i^i  A )  /\  A. x  e.  ( om  i^i  A
) suc  x  e.  ( om  i^i  A ) ) )
2820, 27sylibr 137 . . . 4  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  ( om  i^i  A )  e.  {
y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) } )
29 intss1 3630 . . . 4  |-  ( ( om  i^i  A )  e.  { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  ->  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  C_  ( om  i^i  A ) )
3028, 29syl 14 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  |^| { y  |  ( (/)  e.  y  /\  A. x  e.  y  suc  x  e.  y ) }  C_  ( om  i^i  A ) )
311, 30syl5eqss 2989 . 2  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  ( om  i^i  A ) )
32 ssid 2964 . . . 4  |-  om  C_  om
3332biantrur 287 . . 3  |-  ( om  C_  A  <->  ( om  C_  om  /\  om  C_  A ) )
34 ssin 3159 . . 3  |-  ( ( om  C_  om  /\  om  C_  A )  <->  om  C_  ( om  i^i  A ) )
3533, 34bitri 173 . 2  |-  ( om  C_  A  <->  om  C_  ( om  i^i  A ) )
3631, 35sylibr 137 1  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306    i^i cin 2916    C_ wss 2917   (/)c0 3224   |^|cint 3615   suc csuc 4102   omcom 4313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-suc 4108  df-iom 4314
This theorem is referenced by:  find  4322  finds  4323  finds2  4324  indpi  6440
  Copyright terms: Public domain W3C validator