Step | Hyp | Ref
| Expression |
1 | | iftrue 3336 |
. . . . 5
⊢ (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁)))) =
1) |
2 | | ax-1cn 6977 |
. . . . 5
⊢ 1 ∈
ℂ |
3 | 1, 2 | syl6eqel 2128 |
. . . 4
⊢ (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ) |
4 | 3 | a1i 9 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ)) |
5 | | elnnz 8255 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 <
𝑁)) |
6 | | elnnuz 8509 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
7 | 5, 6 | bitr3i 175 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℤ ∧ 0 <
𝑁) ↔ 𝑁 ∈
(ℤ≥‘1)) |
8 | 7 | biimpi 113 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℤ ∧ 0 <
𝑁) → 𝑁 ∈
(ℤ≥‘1)) |
9 | 8 | adantll 445 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → 𝑁 ∈
(ℤ≥‘1)) |
10 | | cnex 7005 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
11 | 10 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → ℂ ∈
V) |
12 | | simpl 102 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → 𝐴 ∈ ℂ) |
13 | | elnnuz 8509 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℕ ↔ 𝑧 ∈
(ℤ≥‘1)) |
14 | | fvconst2g 5375 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℕ) →
((ℕ × {𝐴})‘𝑧) = 𝐴) |
15 | 13, 14 | sylan2br 272 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑧) = 𝐴) |
16 | 15 | eleq1d 2106 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → (((ℕ × {𝐴})‘𝑧) ∈ ℂ ↔ 𝐴 ∈ ℂ)) |
17 | 12, 16 | mpbird 156 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈
(ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
18 | 17 | adantlr 446 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 𝑧 ∈
(ℤ≥‘1)) → ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
19 | 18 | adantlr 446 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
20 | | mulcl 7008 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑧 · 𝑤) ∈ ℂ) |
21 | 20 | adantl 262 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
22 | 9, 11, 19, 21 | iseqcl 9223 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁) ∈
ℂ) |
23 | | iftrue 3336 |
. . . . . . . . . . . 12
⊢ (0 <
𝑁 → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (seq1( · , (ℕ ×
{𝐴}), ℂ)‘𝑁)) |
24 | 23 | eleq1d 2106 |
. . . . . . . . . . 11
⊢ (0 <
𝑁 → (if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁) ∈
ℂ)) |
25 | 24 | adantl 262 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → (if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁) ∈
ℂ)) |
26 | 22, 25 | mpbird 156 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ 0 <
𝑁) → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ) |
27 | 26 | ex 108 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (0 <
𝑁 → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)) |
28 | 27 | adantr 261 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ ¬
𝑁 = 0) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)) |
29 | 28 | 3adantl3 1062 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ)) |
30 | | simpll2 944 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℤ) |
31 | 30 | znegcld 8362 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℤ) |
32 | | simpr 103 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 < 𝑁) |
33 | 30 | zred 8360 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ∈ ℝ) |
34 | | 0red 7028 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ∈ ℝ) |
35 | 33, 34 | lenltd 7134 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 ≤ 0 ↔ ¬ 0 < 𝑁)) |
36 | 32, 35 | mpbird 156 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ≤ 0) |
37 | | simplr 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 𝑁 = 0) |
38 | 37 | neneqad 2284 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 ≠ 0) |
39 | 38 | necomd 2291 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 ≠ 𝑁) |
40 | | 0z 8256 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
ℤ |
41 | | zltlen 8319 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → (𝑁 < 0
↔ (𝑁 ≤ 0 ∧ 0
≠ 𝑁))) |
42 | 40, 41 | mpan2 401 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℤ → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
43 | 42 | 3ad2ant2 926 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
44 | 43 | ad2antrr 457 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ (𝑁 ≤ 0 ∧ 0 ≠ 𝑁))) |
45 | 36, 39, 44 | mpbir2and 851 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝑁 < 0) |
46 | 33 | lt0neg1d 7507 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝑁 < 0 ↔ 0 < -𝑁)) |
47 | 45, 46 | mpbid 135 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 0 < -𝑁) |
48 | | elnnz 8255 |
. . . . . . . . . . . 12
⊢ (-𝑁 ∈ ℕ ↔ (-𝑁 ∈ ℤ ∧ 0 <
-𝑁)) |
49 | 31, 47, 48 | sylanbrc 394 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈ ℕ) |
50 | | elnnuz 8509 |
. . . . . . . . . . 11
⊢ (-𝑁 ∈ ℕ ↔ -𝑁 ∈
(ℤ≥‘1)) |
51 | 49, 50 | sylib 127 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → -𝑁 ∈
(ℤ≥‘1)) |
52 | 10 | a1i 9 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ℂ ∈ V) |
53 | 17 | 3ad2antl1 1066 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
54 | 53 | adantlr 446 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
55 | 54 | adantlr 446 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℂ ∧ 𝑁 ∈
ℤ ∧ (𝐴 # 0 ∨ 0
≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) ∧ 𝑧 ∈ (ℤ≥‘1))
→ ((ℕ × {𝐴})‘𝑧) ∈ ℂ) |
56 | 20 | adantl 262 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈
ℂ ∧ 𝑁 ∈
ℤ ∧ (𝐴 # 0 ∨ 0
≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) ∧ (𝑧 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → (𝑧 · 𝑤) ∈ ℂ) |
57 | 51, 52, 55, 56 | iseqcl 9223 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑁) ∈
ℂ) |
58 | | simpll1 943 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → 𝐴 ∈ ℂ) |
59 | | expivallem 9256 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℕ) → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁) #
0) |
60 | 59 | 3com23 1110 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ ∧ 𝐴 # 0) → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁) #
0) |
61 | 60 | 3expia 1106 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ) → (𝐴 # 0 → (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁) #
0)) |
62 | 58, 49, 61 | syl2anc 391 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 → (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁) #
0)) |
63 | 39 | neneqd 2226 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 = 𝑁) |
64 | | ioran 669 |
. . . . . . . . . . . . 13
⊢ (¬ (0
< 𝑁 ∨ 0 = 𝑁) ↔ (¬ 0 < 𝑁 ∧ ¬ 0 = 𝑁)) |
65 | 32, 63, 64 | sylanbrc 394 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ (0 < 𝑁 ∨ 0 = 𝑁)) |
66 | | zleloe 8292 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
67 | 40, 66 | mpan 400 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℤ → (0 ≤
𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
68 | 67 | 3ad2ant2 926 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
69 | 68 | ad2antrr 457 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
70 | 65, 69 | mtbird 598 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → ¬ 0 ≤ 𝑁) |
71 | 70 | pm2.21d 549 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (0 ≤ 𝑁 → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑁) # 0)) |
72 | | simpll3 945 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (𝐴 # 0 ∨ 0 ≤ 𝑁)) |
73 | 62, 71, 72 | mpjaod 638 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑁) # 0) |
74 | 57, 73 | recclapd 7757 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (1 / (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁)) ∈
ℂ) |
75 | | iffalse 3339 |
. . . . . . . . . 10
⊢ (¬ 0
< 𝑁 → if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) = (1 / (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁))) |
76 | 75 | eleq1d 2106 |
. . . . . . . . 9
⊢ (¬ 0
< 𝑁 → (if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ ↔ (1 / (seq1(
· , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ)) |
77 | 76 | adantl 262 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → (if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ ↔ (1 / (seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)) ∈ ℂ)) |
78 | 74, 77 | mpbird 156 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) ∧ ¬ 0 < 𝑁) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ) |
79 | 78 | ex 108 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (¬ 0 < 𝑁 → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ)) |
80 | | zdclt 8318 |
. . . . . . . . . . 11
⊢ ((0
∈ ℤ ∧ 𝑁
∈ ℤ) → DECID 0 < 𝑁) |
81 | 40, 80 | mpan 400 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ →
DECID 0 < 𝑁) |
82 | | df-dc 743 |
. . . . . . . . . 10
⊢
(DECID 0 < 𝑁 ↔ (0 < 𝑁 ∨ ¬ 0 < 𝑁)) |
83 | 81, 82 | sylib 127 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → (0 <
𝑁 ∨ ¬ 0 < 𝑁)) |
84 | 83 | adantl 262 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (0 <
𝑁 ∨ ¬ 0 < 𝑁)) |
85 | 84 | adantr 261 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) ∧ ¬
𝑁 = 0) → (0 < 𝑁 ∨ ¬ 0 < 𝑁)) |
86 | 85 | 3adantl3 1062 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (0 < 𝑁 ∨ ¬ 0 < 𝑁)) |
87 | 29, 79, 86 | mpjaod 638 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ) |
88 | | iffalse 3339 |
. . . . . . 7
⊢ (¬
𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) = if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁)))) |
89 | 88 | eleq1d 2106 |
. . . . . 6
⊢ (¬
𝑁 = 0 → (if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ ↔ if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) ∈ ℂ)) |
90 | 89 | adantl 262 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → (if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ ↔ if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))) ∈
ℂ)) |
91 | 87, 90 | mpbird 156 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) ∧ ¬ 𝑁 = 0) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ) |
92 | 91 | ex 108 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (¬ 𝑁 = 0 → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ)) |
93 | | zdceq 8316 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 0 ∈
ℤ) → DECID 𝑁 = 0) |
94 | 40, 93 | mpan2 401 |
. . . . 5
⊢ (𝑁 ∈ ℤ →
DECID 𝑁 =
0) |
95 | | df-dc 743 |
. . . . 5
⊢
(DECID 𝑁 = 0 ↔ (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
96 | 94, 95 | sylib 127 |
. . . 4
⊢ (𝑁 ∈ ℤ → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
97 | 96 | 3ad2ant2 926 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝑁 = 0 ∨ ¬ 𝑁 = 0)) |
98 | 4, 92, 97 | mpjaod 638 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))
∈ ℂ) |
99 | | sneq 3386 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) |
100 | 99 | xpeq2d 4369 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (ℕ × {𝑥}) = (ℕ × {𝐴})) |
101 | | iseqeq3 9216 |
. . . . . . 7
⊢ ((ℕ
× {𝑥}) = (ℕ
× {𝐴}) → seq1(
· , (ℕ × {𝑥}), ℂ) = seq1( · , (ℕ
× {𝐴}),
ℂ)) |
102 | 100, 101 | syl 14 |
. . . . . 6
⊢ (𝑥 = 𝐴 → seq1( · , (ℕ ×
{𝑥}), ℂ) = seq1(
· , (ℕ × {𝐴}), ℂ)) |
103 | 102 | fveq1d 5180 |
. . . . 5
⊢ (𝑥 = 𝐴 → (seq1( · , (ℕ ×
{𝑥}), ℂ)‘𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑦)) |
104 | 102 | fveq1d 5180 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (seq1( · , (ℕ ×
{𝑥}), ℂ)‘-𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑦)) |
105 | 104 | oveq2d 5528 |
. . . . 5
⊢ (𝑥 = 𝐴 → (1 / (seq1( · , (ℕ
× {𝑥}),
ℂ)‘-𝑦)) = (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))) |
106 | 103, 105 | ifeq12d 3347 |
. . . 4
⊢ (𝑥 = 𝐴 → if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝑥}),
ℂ)‘-𝑦))) = if(0
< 𝑦, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦)))) |
107 | 106 | ifeq2d 3346 |
. . 3
⊢ (𝑥 = 𝐴 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝑥}),
ℂ)‘-𝑦)))) =
if(𝑦 = 0, 1, if(0 <
𝑦, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑦))))) |
108 | | eqeq1 2046 |
. . . 4
⊢ (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0)) |
109 | | breq2 3768 |
. . . . 5
⊢ (𝑦 = 𝑁 → (0 < 𝑦 ↔ 0 < 𝑁)) |
110 | | fveq2 5178 |
. . . . 5
⊢ (𝑦 = 𝑁 → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁)) |
111 | | negeq 7204 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → -𝑦 = -𝑁) |
112 | 111 | fveq2d 5182 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (seq1( · , (ℕ ×
{𝐴}), ℂ)‘-𝑦) = (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑁)) |
113 | 112 | oveq2d 5528 |
. . . . 5
⊢ (𝑦 = 𝑁 → (1 / (seq1( · , (ℕ
× {𝐴}),
ℂ)‘-𝑦)) = (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))) |
114 | 109, 110,
113 | ifbieq12d 3354 |
. . . 4
⊢ (𝑦 = 𝑁 → if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑦))) = if(0
< 𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) |
115 | 108, 114 | ifbieq2d 3352 |
. . 3
⊢ (𝑦 = 𝑁 → if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑦), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑦)))) =
if(𝑁 = 0, 1, if(0 <
𝑁, (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁))))) |
116 | | df-iexp 9255 |
. . 3
⊢ ↑ =
(𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ
× {𝑥}),
ℂ)‘𝑦), (1 /
(seq1( · , (ℕ × {𝑥}), ℂ)‘-𝑦))))) |
117 | 107, 115,
116 | ovmpt2g 5635 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ
× {𝐴}),
ℂ)‘𝑁), (1 /
(seq1( · , (ℕ × {𝐴}), ℂ)‘-𝑁)))) ∈ ℂ) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))) |
118 | 98, 117 | syld3an3 1180 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ ∧ (𝐴 # 0 ∨ 0 ≤ 𝑁)) → (𝐴↑𝑁) = if(𝑁 = 0, 1, if(0 < 𝑁, (seq1( · , (ℕ × {𝐴}), ℂ)‘𝑁), (1 / (seq1( · ,
(ℕ × {𝐴}),
ℂ)‘-𝑁))))) |