ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expival Unicode version

Theorem expival 9257
Description: Value of exponentiation to integer powers. (Contributed by Jim Kingdon, 7-Jun-2020.)
Assertion
Ref Expression
expival  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )

Proof of Theorem expival
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iftrue 3336 . . . . 5  |-  ( N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  =  1 )
2 ax-1cn 6977 . . . . 5  |-  1  e.  CC
31, 2syl6eqel 2128 . . . 4  |-  ( N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )
43a1i 9 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )  e.  CC ) )
5 elnnz 8255 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  <->  ( N  e.  ZZ  /\  0  < 
N ) )
6 elnnuz 8509 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
75, 6bitr3i 175 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  0  <  N )  <->  N  e.  ( ZZ>= `  1 )
)
87biimpi 113 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  0  <  N )  ->  N  e.  ( ZZ>= ` 
1 ) )
98adantll 445 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  N  e.  ( ZZ>= `  1 )
)
10 cnex 7005 . . . . . . . . . . . 12  |-  CC  e.  _V
1110a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  CC  e.  _V )
12 simpl 102 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  ->  A  e.  CC )
13 elnnuz 8509 . . . . . . . . . . . . . . . 16  |-  ( z  e.  NN  <->  z  e.  ( ZZ>= `  1 )
)
14 fvconst2g 5375 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  z  e.  NN )  ->  ( ( NN  X.  { A } ) `  z )  =  A )
1513, 14sylan2br 272 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  z )  =  A )
1615eleq1d 2106 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  -> 
( ( ( NN 
X.  { A }
) `  z )  e.  CC  <->  A  e.  CC ) )
1712, 16mpbird 156 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  z  e.  ( ZZ>= ` 
1 ) )  -> 
( ( NN  X.  { A } ) `  z )  e.  CC )
1817adantlr 446 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  z  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  z )  e.  CC )
1918adantlr 446 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N )  /\  z  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  z )  e.  CC )
20 mulcl 7008 . . . . . . . . . . . 12  |-  ( ( z  e.  CC  /\  w  e.  CC )  ->  ( z  x.  w
)  e.  CC )
2120adantl 262 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
229, 11, 19, 21iseqcl 9223 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N )  e.  CC )
23 iftrue 3336 . . . . . . . . . . . 12  |-  ( 0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  =  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ,  CC ) `
 N ) )
2423eleq1d 2106 . . . . . . . . . . 11  |-  ( 0  <  N  ->  ( if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC  <->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )  e.  CC ) )
2524adantl 262 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  ( if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC  <->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )  e.  CC ) )
2622, 25mpbird 156 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  0  <  N
)  ->  if (
0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )  e.  CC )
2726ex 108 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( 0  <  N  ->  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
2827adantr 261 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (
0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
29283adantl3 1062 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  (
0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
30 simpll2 944 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  ZZ )
3130znegcld 8362 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ZZ )
32 simpr 103 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <  N )
3330zred 8360 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  e.  RR )
34 0red 7028 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  e.  RR )
3533, 34lenltd 7134 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <_  0  <->  -.  0  <  N ) )
3632, 35mpbird 156 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <_  0 )
37 simplr 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  N  =  0 )
3837neneqad 2284 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  =/=  0 )
3938necomd 2291 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  =/=  N )
40 0z 8256 . . . . . . . . . . . . . . . . 17  |-  0  e.  ZZ
41 zltlen 8319 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
4240, 41mpan2 401 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/= 
N ) ) )
43423ad2ant2 926 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( N  <  0  <->  ( N  <_  0  /\  0  =/=  N ) ) )
4443ad2antrr 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  ( N  <_  0  /\  0  =/= 
N ) ) )
4536, 39, 44mpbir2and 851 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  N  <  0 )
4633lt0neg1d 7507 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( N  <  0  <->  0  <  -u N ) )
4745, 46mpbid 135 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  0  <  -u N )
48 elnnz 8255 . . . . . . . . . . . 12  |-  ( -u N  e.  NN  <->  ( -u N  e.  ZZ  /\  0  <  -u N ) )
4931, 47, 48sylanbrc 394 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  NN )
50 elnnuz 8509 . . . . . . . . . . 11  |-  ( -u N  e.  NN  <->  -u N  e.  ( ZZ>= `  1 )
)
5149, 50sylib 127 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -u N  e.  ( ZZ>= `  1 )
)
5210a1i 9 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  CC  e.  _V )
53173ad2antl1 1066 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  z  e.  (
ZZ>= `  1 ) )  ->  ( ( NN 
X.  { A }
) `  z )  e.  CC )
5453adantlr 446 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  z  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  z )  e.  CC )
5554adantlr 446 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  /\  z  e.  ( ZZ>= `  1 )
)  ->  ( ( NN  X.  { A }
) `  z )  e.  CC )
5620adantl 262 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  /\  (
z  e.  CC  /\  w  e.  CC )
)  ->  ( z  x.  w )  e.  CC )
5751, 52, 55, 56iseqcl 9223 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N )  e.  CC )
58 simpll1 943 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  A  e.  CC )
59 expivallem 9256 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  A #  0  /\  -u N  e.  NN )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 )
60593com23 1110 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  -u N  e.  NN  /\  A #  0 )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 )
61603expia 1106 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  -u N  e.  NN )  ->  ( A #  0  ->  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 ) )
6258, 49, 61syl2anc 391 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 ) )
6339neneqd 2226 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  =  N )
64 ioran 669 . . . . . . . . . . . . 13  |-  ( -.  ( 0  <  N  \/  0  =  N
)  <->  ( -.  0  <  N  /\  -.  0  =  N ) )
6532, 63, 64sylanbrc 394 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  ( 0  <  N  \/  0  =  N
) )
66 zleloe 8292 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  ->  ( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
6740, 66mpan 400 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
68673ad2ant2 926 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( 0  <_  N  <->  ( 0  <  N  \/  0  =  N )
) )
6968ad2antrr 457 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  <->  ( 0  <  N  \/  0  =  N ) ) )
7065, 69mtbird 598 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  -.  0  <_  N )
7170pm2.21d 549 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
0  <_  N  ->  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) #  0 ) )
72 simpll3 945 . . . . . . . . . 10  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( A #  0  \/  0  <_  N ) )
7362, 71, 72mpjaod 638 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) #  0 )
7457, 73recclapd 7757 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) )  e.  CC )
75 iffalse 3339 . . . . . . . . . 10  |-  ( -.  0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) ) )
7675eleq1d 2106 . . . . . . . . 9  |-  ( -.  0  <  N  -> 
( if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )  e.  CC  <->  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u N ) )  e.  CC ) )
7776adantl 262 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  ( if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC  <->  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) )  e.  CC ) )
7874, 77mpbird 156 . . . . . . 7  |-  ( ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0
)  /\  -.  0  <  N )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC )
7978ex 108 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  ( -.  0  <  N  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
80 zdclt 8318 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ )  -> DECID  0  <  N )
8140, 80mpan 400 . . . . . . . . . 10  |-  ( N  e.  ZZ  -> DECID  0  <  N )
82 df-dc 743 . . . . . . . . . 10  |-  (DECID  0  < 
N  <->  ( 0  < 
N  \/  -.  0  <  N ) )
8381, 82sylib 127 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
0  <  N  \/  -.  0  <  N ) )
8483adantl 262 . . . . . . . 8  |-  ( ( A  e.  CC  /\  N  e.  ZZ )  ->  ( 0  <  N  \/  -.  0  <  N
) )
8584adantr 261 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (
0  <  N  \/  -.  0  <  N ) )
86853adantl3 1062 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  (
0  <  N  \/  -.  0  <  N ) )
8729, 79, 86mpjaod 638 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC )
88 iffalse 3339 . . . . . . 7  |-  ( -.  N  =  0  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  =  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )
8988eleq1d 2106 . . . . . 6  |-  ( -.  N  =  0  -> 
( if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )  e.  CC  <->  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) )  e.  CC ) )
9089adantl 262 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  ( if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC  <->  if (
0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )  e.  CC ) )
9187, 90mpbird 156 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  /\  -.  N  =  0 )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )
9291ex 108 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( -.  N  =  0  ->  if ( N  =  0 , 
1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) )  e.  CC ) )
93 zdceq 8316 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
9440, 93mpan2 401 . . . . 5  |-  ( N  e.  ZZ  -> DECID  N  =  0
)
95 df-dc 743 . . . . 5  |-  (DECID  N  =  0  <->  ( N  =  0  \/  -.  N  =  0 ) )
9694, 95sylib 127 . . . 4  |-  ( N  e.  ZZ  ->  ( N  =  0  \/  -.  N  =  0
) )
97963ad2ant2 926 . . 3  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( N  =  0  \/  -.  N  =  0 ) )
984, 92, 97mpjaod 638 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  ->  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )
99 sneq 3386 . . . . . . . 8  |-  ( x  =  A  ->  { x }  =  { A } )
10099xpeq2d 4369 . . . . . . 7  |-  ( x  =  A  ->  ( NN  X.  { x }
)  =  ( NN 
X.  { A }
) )
101 iseqeq3 9216 . . . . . . 7  |-  ( ( NN  X.  { x } )  =  ( NN  X.  { A } )  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC )  =  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) )
102100, 101syl 14 . . . . . 6  |-  ( x  =  A  ->  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC )  =  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) )
103102fveq1d 5180 . . . . 5  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC ) `  y
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  y )
)
104102fveq1d 5180 . . . . . 6  |-  ( x  =  A  ->  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC ) `  -u y
)  =  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) )
105104oveq2d 5528 . . . . 5  |-  ( x  =  A  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  {
x } ) ,  CC ) `  -u y
) )  =  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) ) )
106103, 105ifeq12d 3347 . . . 4  |-  ( x  =  A  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { x } ) ,  CC ) `  -u y ) ) )  =  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  y
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u y ) ) ) )
107106ifeq2d 3346 . . 3  |-  ( x  =  A  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { x } ) ,  CC ) `  -u y ) ) ) )  =  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1 (  x.  ,  ( NN 
X.  { A }
) ,  CC ) `
 y ) ,  ( 1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) ) ) ) )
108 eqeq1 2046 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
109 breq2 3768 . . . . 5  |-  ( y  =  N  ->  (
0  <  y  <->  0  <  N ) )
110 fveq2 5178 . . . . 5  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  y )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N )
)
111 negeq 7204 . . . . . . 7  |-  ( y  =  N  ->  -u y  =  -u N )
112111fveq2d 5182 . . . . . 6  |-  ( y  =  N  ->  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y )  =  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) )
113112oveq2d 5528 . . . . 5  |-  ( y  =  N  ->  (
1  /  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  -u y ) )  =  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) )
114109, 110, 113ifbieq12d 3354 . . . 4  |-  ( y  =  N  ->  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u y
) ) )  =  if ( 0  < 
N ,  (  seq 1 (  x.  , 
( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )
115108, 114ifbieq2d 3352 . . 3  |-  ( y  =  N  ->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u y
) ) ) )  =  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )
116 df-iexp 9255 . . 3  |-  ^  =  ( x  e.  CC ,  y  e.  ZZ  |->  if ( y  =  0 ,  1 ,  if ( 0  <  y ,  (  seq 1
(  x.  ,  ( NN  X.  { x } ) ,  CC ) `  y ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { x } ) ,  CC ) `  -u y ) ) ) ) )
117107, 115, 116ovmpt2g 5635 . 2  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  if ( N  =  0 ,  1 ,  if ( 0  <  N ,  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N ) ,  ( 1  / 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N
) ) ) )  e.  CC )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )
11898, 117syld3an3 1180 1  |-  ( ( A  e.  CC  /\  N  e.  ZZ  /\  ( A #  0  \/  0  <_  N ) )  -> 
( A ^ N
)  =  if ( N  =  0 ,  1 ,  if ( 0  <  N , 
(  seq 1 (  x.  ,  ( NN  X.  { A } ) ,  CC ) `  N
) ,  ( 1  /  (  seq 1
(  x.  ,  ( NN  X.  { A } ) ,  CC ) `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629  DECID wdc 742    /\ w3a 885    = wceq 1243    e. wcel 1393    =/= wne 2204   _Vcvv 2557   ifcif 3331   {csn 3375   class class class wbr 3764    X. cxp 4343   ` cfv 4902  (class class class)co 5512   CCcc 6887   0cc0 6889   1c1 6890    x. cmul 6894    < clt 7060    <_ cle 7061   -ucneg 7183   # cap 7572    / cdiv 7651   NNcn 7914   ZZcz 8245   ZZ>=cuz 8473    seqcseq 9211   ^cexp 9254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212  df-iexp 9255
This theorem is referenced by:  expinnval  9258  exp0  9259  expnegap0  9263
  Copyright terms: Public domain W3C validator