ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemdecn GIF version

Theorem resqrexlemdecn 9584
Description: Lemma for resqrex 9598. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemdecn.n (𝜑𝑁 ∈ ℕ)
resqrexlemdecn.m (𝜑𝑀 ∈ ℕ)
resqrexlemdecn.nm (𝜑𝑁 < 𝑀)
Assertion
Ref Expression
resqrexlemdecn (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝐹(𝑦,𝑧)   𝑀(𝑦,𝑧)   𝑁(𝑦,𝑧)

Proof of Theorem resqrexlemdecn
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemdecn.n . . . . 5 (𝜑𝑁 ∈ ℕ)
21nnzd 8357 . . . 4 (𝜑𝑁 ∈ ℤ)
32peano2zd 8361 . . 3 (𝜑 → (𝑁 + 1) ∈ ℤ)
4 resqrexlemdecn.m . . . 4 (𝜑𝑀 ∈ ℕ)
54nnzd 8357 . . 3 (𝜑𝑀 ∈ ℤ)
6 resqrexlemdecn.nm . . . 4 (𝜑𝑁 < 𝑀)
7 nnltp1le 8302 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
81, 4, 7syl2anc 391 . . . 4 (𝜑 → (𝑁 < 𝑀 ↔ (𝑁 + 1) ≤ 𝑀))
96, 8mpbid 135 . . 3 (𝜑 → (𝑁 + 1) ≤ 𝑀)
10 fveq2 5178 . . . . . 6 (𝑤 = (𝑁 + 1) → (𝐹𝑤) = (𝐹‘(𝑁 + 1)))
1110breq1d 3774 . . . . 5 (𝑤 = (𝑁 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
1211imbi2d 219 . . . 4 (𝑤 = (𝑁 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))))
13 fveq2 5178 . . . . . 6 (𝑤 = 𝑘 → (𝐹𝑤) = (𝐹𝑘))
1413breq1d 3774 . . . . 5 (𝑤 = 𝑘 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑘) < (𝐹𝑁)))
1514imbi2d 219 . . . 4 (𝑤 = 𝑘 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑘) < (𝐹𝑁))))
16 fveq2 5178 . . . . . 6 (𝑤 = (𝑘 + 1) → (𝐹𝑤) = (𝐹‘(𝑘 + 1)))
1716breq1d 3774 . . . . 5 (𝑤 = (𝑘 + 1) → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
1817imbi2d 219 . . . 4 (𝑤 = (𝑘 + 1) → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
19 fveq2 5178 . . . . . 6 (𝑤 = 𝑀 → (𝐹𝑤) = (𝐹𝑀))
2019breq1d 3774 . . . . 5 (𝑤 = 𝑀 → ((𝐹𝑤) < (𝐹𝑁) ↔ (𝐹𝑀) < (𝐹𝑁)))
2120imbi2d 219 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝐹𝑤) < (𝐹𝑁)) ↔ (𝜑 → (𝐹𝑀) < (𝐹𝑁))))
22 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
23 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
24 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
2522, 23, 24resqrexlemdec 9583 . . . . . 6 ((𝜑𝑁 ∈ ℕ) → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
261, 25mpdan 398 . . . . 5 (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁))
2726a1i 9 . . . 4 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝐹‘(𝑁 + 1)) < (𝐹𝑁)))
2822, 23, 24resqrexlemf 9579 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶ℝ+)
2928ad2antrr 457 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝐹:ℕ⟶ℝ+)
30 simplr2 947 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℤ)
31 1red 7040 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ∈ ℝ)
323ad2antrr 457 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℤ)
3332zred 8358 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ∈ ℝ)
3430zred 8358 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℝ)
351nnred 7925 . . . . . . . . . . . . . . . 16 (𝜑𝑁 ∈ ℝ)
361nngt0d 7955 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 𝑁)
37 0re 7025 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
38 ltle 7103 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑁 → 0 ≤ 𝑁))
3937, 38mpan 400 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (0 < 𝑁 → 0 ≤ 𝑁))
4035, 36, 39sylc 56 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ 𝑁)
41 1red 7040 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ)
4241, 35addge02d 7523 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
4340, 42mpbid 135 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ (𝑁 + 1))
4443ad2antrr 457 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ (𝑁 + 1))
45 simplr3 948 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑁 + 1) ≤ 𝑘)
4631, 33, 34, 44, 45letrd 7136 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 1 ≤ 𝑘)
47 elnnz1 8266 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
4830, 46, 47sylanbrc 394 . . . . . . . . . . 11 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑘 ∈ ℕ)
4948peano2nnd 7927 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝑘 + 1) ∈ ℕ)
5029, 49ffvelrnd 5303 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ+)
5150rpred 8620 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
5229, 48ffvelrnd 5303 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ+)
5352rpred 8620 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) ∈ ℝ)
541ad2antrr 457 . . . . . . . . . 10 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝑁 ∈ ℕ)
5529, 54ffvelrnd 5303 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ+)
5655rpred 8620 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑁) ∈ ℝ)
57 simpll 481 . . . . . . . . 9 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → 𝜑)
5822, 23, 24resqrexlemdec 9583 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
5957, 48, 58syl2anc 391 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑘))
60 simpr 103 . . . . . . . 8 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹𝑘) < (𝐹𝑁))
6151, 53, 56, 59, 60lttrd 7138 . . . . . . 7 (((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) ∧ (𝐹𝑘) < (𝐹𝑁)) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))
6261ex 108 . . . . . 6 ((𝜑 ∧ ((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘)) → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁)))
6362expcom 109 . . . . 5 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → (𝜑 → ((𝐹𝑘) < (𝐹𝑁) → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6463a2d 23 . . . 4 (((𝑁 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑘) → ((𝜑 → (𝐹𝑘) < (𝐹𝑁)) → (𝜑 → (𝐹‘(𝑘 + 1)) < (𝐹𝑁))))
6512, 15, 18, 21, 27, 64uzind 8347 . . 3 (((𝑁 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑁 + 1) ≤ 𝑀) → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
663, 5, 9, 65syl3anc 1135 . 2 (𝜑 → (𝜑 → (𝐹𝑀) < (𝐹𝑁)))
6766pm2.43i 43 1 (𝜑 → (𝐹𝑀) < (𝐹𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  {csn 3375   class class class wbr 3764   × cxp 4343  wf 4898  cfv 4902  (class class class)co 5512  cmpt2 5514  cr 6886  0cc0 6887  1c1 6888   + caddc 6890   < clt 7058  cle 7059   / cdiv 7649  cn 7912  2c2 7962  cz 8243  +crp 8581  seqcseq 9185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-mulrcl 6981  ax-addcom 6982  ax-mulcom 6983  ax-addass 6984  ax-mulass 6985  ax-distr 6986  ax-i2m1 6987  ax-1rid 6989  ax-0id 6990  ax-rnegex 6991  ax-precex 6992  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-apti 6997  ax-pre-ltadd 6998  ax-pre-mulgt0 6999  ax-pre-mulext 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-if 3332  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-reap 7564  df-ap 7571  df-div 7650  df-inn 7913  df-2 7971  df-3 7972  df-4 7973  df-n0 8180  df-z 8244  df-uz 8472  df-rp 8582  df-iseq 9186  df-iexp 9229
This theorem is referenced by:  resqrexlemnm  9590  resqrexlemcvg  9591  resqrexlemoverl  9593  resqrexlemglsq  9594
  Copyright terms: Public domain W3C validator