Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nneoor GIF version

Theorem nneoor 8340
 Description: A positive integer is even or odd. (Contributed by Jim Kingdon, 15-Mar-2020.)
Assertion
Ref Expression
nneoor (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nneoor
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5519 . . . . . 6 (𝑗 = 1 → (𝑗 + 1) = (1 + 1))
21oveq1d 5527 . . . . 5 (𝑗 = 1 → ((𝑗 + 1) / 2) = ((1 + 1) / 2))
32eleq1d 2106 . . . 4 (𝑗 = 1 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((1 + 1) / 2) ∈ ℕ))
4 oveq1 5519 . . . . 5 (𝑗 = 1 → (𝑗 / 2) = (1 / 2))
54eleq1d 2106 . . . 4 (𝑗 = 1 → ((𝑗 / 2) ∈ ℕ ↔ (1 / 2) ∈ ℕ))
63, 5orbi12d 707 . . 3 (𝑗 = 1 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)))
7 oveq1 5519 . . . . . 6 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
87oveq1d 5527 . . . . 5 (𝑗 = 𝑘 → ((𝑗 + 1) / 2) = ((𝑘 + 1) / 2))
98eleq1d 2106 . . . 4 (𝑗 = 𝑘 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
10 oveq1 5519 . . . . 5 (𝑗 = 𝑘 → (𝑗 / 2) = (𝑘 / 2))
1110eleq1d 2106 . . . 4 (𝑗 = 𝑘 → ((𝑗 / 2) ∈ ℕ ↔ (𝑘 / 2) ∈ ℕ))
129, 11orbi12d 707 . . 3 (𝑗 = 𝑘 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ)))
13 oveq1 5519 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗 + 1) = ((𝑘 + 1) + 1))
1413oveq1d 5527 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗 + 1) / 2) = (((𝑘 + 1) + 1) / 2))
1514eleq1d 2106 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗 + 1) / 2) ∈ ℕ ↔ (((𝑘 + 1) + 1) / 2) ∈ ℕ))
16 oveq1 5519 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 / 2) = ((𝑘 + 1) / 2))
1716eleq1d 2106 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑗 / 2) ∈ ℕ ↔ ((𝑘 + 1) / 2) ∈ ℕ))
1815, 17orbi12d 707 . . 3 (𝑗 = (𝑘 + 1) → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
19 oveq1 5519 . . . . . 6 (𝑗 = 𝑁 → (𝑗 + 1) = (𝑁 + 1))
2019oveq1d 5527 . . . . 5 (𝑗 = 𝑁 → ((𝑗 + 1) / 2) = ((𝑁 + 1) / 2))
2120eleq1d 2106 . . . 4 (𝑗 = 𝑁 → (((𝑗 + 1) / 2) ∈ ℕ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
22 oveq1 5519 . . . . 5 (𝑗 = 𝑁 → (𝑗 / 2) = (𝑁 / 2))
2322eleq1d 2106 . . . 4 (𝑗 = 𝑁 → ((𝑗 / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
2421, 23orbi12d 707 . . 3 (𝑗 = 𝑁 → ((((𝑗 + 1) / 2) ∈ ℕ ∨ (𝑗 / 2) ∈ ℕ) ↔ (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ)))
25 df-2 7973 . . . . . . 7 2 = (1 + 1)
2625oveq1i 5522 . . . . . 6 (2 / 2) = ((1 + 1) / 2)
27 2div2e1 8042 . . . . . 6 (2 / 2) = 1
2826, 27eqtr3i 2062 . . . . 5 ((1 + 1) / 2) = 1
29 1nn 7925 . . . . 5 1 ∈ ℕ
3028, 29eqeltri 2110 . . . 4 ((1 + 1) / 2) ∈ ℕ
3130orci 650 . . 3 (((1 + 1) / 2) ∈ ℕ ∨ (1 / 2) ∈ ℕ)
32 peano2nn 7926 . . . . . 6 ((𝑘 / 2) ∈ ℕ → ((𝑘 / 2) + 1) ∈ ℕ)
33 nncn 7922 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
34 add1p1 8174 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 1) + 1) = (𝑘 + 2))
3534oveq1d 5527 . . . . . . . . 9 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 + 2) / 2))
36 2cn 7986 . . . . . . . . . . 11 2 ∈ ℂ
37 2ap0 8009 . . . . . . . . . . . 12 2 # 0
3836, 37pm3.2i 257 . . . . . . . . . . 11 (2 ∈ ℂ ∧ 2 # 0)
39 divdirap 7674 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4036, 38, 39mp3an23 1224 . . . . . . . . . 10 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + (2 / 2)))
4127oveq2i 5523 . . . . . . . . . 10 ((𝑘 / 2) + (2 / 2)) = ((𝑘 / 2) + 1)
4240, 41syl6eq 2088 . . . . . . . . 9 (𝑘 ∈ ℂ → ((𝑘 + 2) / 2) = ((𝑘 / 2) + 1))
4335, 42eqtrd 2072 . . . . . . . 8 (𝑘 ∈ ℂ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4433, 43syl 14 . . . . . . 7 (𝑘 ∈ ℕ → (((𝑘 + 1) + 1) / 2) = ((𝑘 / 2) + 1))
4544eleq1d 2106 . . . . . 6 (𝑘 ∈ ℕ → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ↔ ((𝑘 / 2) + 1) ∈ ℕ))
4632, 45syl5ibr 145 . . . . 5 (𝑘 ∈ ℕ → ((𝑘 / 2) ∈ ℕ → (((𝑘 + 1) + 1) / 2) ∈ ℕ))
4746orim2d 702 . . . 4 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → (((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ)))
48 orcom 647 . . . 4 ((((𝑘 + 1) / 2) ∈ ℕ ∨ (((𝑘 + 1) + 1) / 2) ∈ ℕ) ↔ ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ))
4947, 48syl6ib 150 . . 3 (𝑘 ∈ ℕ → ((((𝑘 + 1) / 2) ∈ ℕ ∨ (𝑘 / 2) ∈ ℕ) → ((((𝑘 + 1) + 1) / 2) ∈ ℕ ∨ ((𝑘 + 1) / 2) ∈ ℕ)))
506, 12, 18, 24, 31, 49nnind 7930 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ ∨ (𝑁 / 2) ∈ ℕ))
5150orcomd 648 1 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ∨ ((𝑁 + 1) / 2) ∈ ℕ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∨ wo 629   = wceq 1243   ∈ wcel 1393   class class class wbr 3764  (class class class)co 5512  ℂcc 6887  0cc0 6889  1c1 6890   + caddc 6892   # cap 7572   / cdiv 7651  ℕcn 7914  2c2 7964 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-2 7973 This theorem is referenced by:  nneo  8341  zeo  8343
 Copyright terms: Public domain W3C validator