ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orim2d Structured version   GIF version

Theorem orim2d 701
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 23-Apr-1995.)
Hypothesis
Ref Expression
orim1d.1 (φ → (ψχ))
Assertion
Ref Expression
orim2d (φ → ((θ ψ) → (θ χ)))

Proof of Theorem orim2d
StepHypRef Expression
1 idd 21 . 2 (φ → (θθ))
2 orim1d.1 . 2 (φ → (ψχ))
31, 2orim12d 699 1 (φ → ((θ ψ) → (θ χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  orim2  702  orbi2d  703  pm2.82  724  pm2.13dc  778  stabtestimpdc  823  acexmidlemcase  5450  poxp  5794  indpi  6326  nneoor  8096  uzp1  8262  bj-nn0suc  9394
  Copyright terms: Public domain W3C validator