ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnzlemshrink GIF version

Theorem qbtwnzlemshrink 9104
Description: Lemma for qbtwnz 9106. Shrinking the range around the given rational number. (Contributed by Jim Kingdon, 8-Oct-2021.)
Assertion
Ref Expression
qbtwnzlemshrink ((𝐴 ∈ ℚ ∧ 𝐽 ∈ ℕ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable groups:   𝐴,𝑚,𝑥   𝑚,𝐽
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem qbtwnzlemshrink
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 905 . 2 ((𝐴 ∈ ℚ ∧ 𝐽 ∈ ℕ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → 𝐽 ∈ ℕ)
2 3simpb 902 . 2 ((𝐴 ∈ ℚ ∧ 𝐽 ∈ ℕ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → (𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
3 oveq2 5520 . . . . . . . 8 (𝑤 = 1 → (𝑚 + 𝑤) = (𝑚 + 1))
43breq2d 3776 . . . . . . 7 (𝑤 = 1 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 1)))
54anbi2d 437 . . . . . 6 (𝑤 = 1 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 1))))
65rexbidv 2327 . . . . 5 (𝑤 = 1 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))))
76anbi2d 437 . . . 4 (𝑤 = 1 → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)))))
87imbi1d 220 . . 3 (𝑤 = 1 → (((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
9 oveq2 5520 . . . . . . . 8 (𝑤 = 𝑘 → (𝑚 + 𝑤) = (𝑚 + 𝑘))
109breq2d 3776 . . . . . . 7 (𝑤 = 𝑘 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝑘)))
1110anbi2d 437 . . . . . 6 (𝑤 = 𝑘 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1211rexbidv 2327 . . . . 5 (𝑤 = 𝑘 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
1312anbi2d 437 . . . 4 (𝑤 = 𝑘 → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
1413imbi1d 220 . . 3 (𝑤 = 𝑘 → (((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
15 oveq2 5520 . . . . . . . 8 (𝑤 = (𝑘 + 1) → (𝑚 + 𝑤) = (𝑚 + (𝑘 + 1)))
1615breq2d 3776 . . . . . . 7 (𝑤 = (𝑘 + 1) → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + (𝑘 + 1))))
1716anbi2d 437 . . . . . 6 (𝑤 = (𝑘 + 1) → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1817rexbidv 2327 . . . . 5 (𝑤 = (𝑘 + 1) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))))
1918anbi2d 437 . . . 4 (𝑤 = (𝑘 + 1) → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))))))
2019imbi1d 220 . . 3 (𝑤 = (𝑘 + 1) → (((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
21 oveq2 5520 . . . . . . . 8 (𝑤 = 𝐽 → (𝑚 + 𝑤) = (𝑚 + 𝐽))
2221breq2d 3776 . . . . . . 7 (𝑤 = 𝐽 → (𝐴 < (𝑚 + 𝑤) ↔ 𝐴 < (𝑚 + 𝐽)))
2322anbi2d 437 . . . . . 6 (𝑤 = 𝐽 → ((𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2423rexbidv 2327 . . . . 5 (𝑤 = 𝐽 → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤)) ↔ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))))
2524anbi2d 437 . . . 4 (𝑤 = 𝐽 → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) ↔ (𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽)))))
2625imbi1d 220 . . 3 (𝑤 = 𝐽 → (((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑤))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) ↔ ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
27 breq1 3767 . . . . . . 7 (𝑚 = 𝑥 → (𝑚𝐴𝑥𝐴))
28 oveq1 5519 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2928breq2d 3776 . . . . . . 7 (𝑚 = 𝑥 → (𝐴 < (𝑚 + 1) ↔ 𝐴 < (𝑥 + 1)))
3027, 29anbi12d 442 . . . . . 6 (𝑚 = 𝑥 → ((𝑚𝐴𝐴 < (𝑚 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3130cbvrexv 2534 . . . . 5 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) ↔ ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3231biimpi 113 . . . 4 (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1)) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
3332adantl 262 . . 3 ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 1))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
34 qbtwnzlemstep 9103 . . . . . 6 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))
35343expia 1106 . . . . 5 ((𝑘 ∈ ℕ ∧ 𝐴 ∈ ℚ) → (∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1))) → ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))))
3635imdistanda 422 . . . 4 (𝑘 ∈ ℕ → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → (𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘)))))
3736imim1d 69 . . 3 (𝑘 ∈ ℕ → (((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝑘))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))) → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + (𝑘 + 1)))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))))
388, 14, 20, 26, 33, 37nnind 7930 . 2 (𝐽 ∈ ℕ → ((𝐴 ∈ ℚ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
391, 2, 38sylc 56 1 ((𝐴 ∈ ℚ ∧ 𝐽 ∈ ℕ ∧ ∃𝑚 ∈ ℤ (𝑚𝐴𝐴 < (𝑚 + 𝐽))) → ∃𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393  wrex 2307   class class class wbr 3764  (class class class)co 5512  1c1 6890   + caddc 6892   < clt 7060  cle 7061  cn 7914  cz 8245  cq 8554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-q 8555  df-rp 8584
This theorem is referenced by:  qbtwnzlemex  9105
  Copyright terms: Public domain W3C validator