ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0lt2 GIF version

Theorem nn0lt2 8320
Description: A nonnegative integer less than 2 must be 0 or 1. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
nn0lt2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))

Proof of Theorem nn0lt2
StepHypRef Expression
1 olc 632 . . 3 (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1))
21a1i 9 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
3 nn0z 8263 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 2z 8271 . . . . . 6 2 ∈ ℤ
5 zltlem1 8299 . . . . . 6 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
63, 4, 5sylancl 392 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ (2 − 1)))
7 2m1e1 8032 . . . . . 6 (2 − 1) = 1
87breq2i 3772 . . . . 5 (𝑁 ≤ (2 − 1) ↔ 𝑁 ≤ 1)
96, 8syl6bb 185 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 < 2 ↔ 𝑁 ≤ 1))
10 necom 2289 . . . . 5 (𝑁 ≠ 1 ↔ 1 ≠ 𝑁)
11 1z 8269 . . . . . . . 8 1 ∈ ℤ
12 zltlen 8317 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
133, 11, 12sylancl 392 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ (𝑁 ≤ 1 ∧ 1 ≠ 𝑁)))
14 nn0lt10b 8319 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 < 1 ↔ 𝑁 = 0))
1514biimpa 280 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑁 < 1) → 𝑁 = 0)
1615orcd 652 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑁 < 1) → (𝑁 = 0 ∨ 𝑁 = 1))
1716ex 108 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 < 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
1813, 17sylbird 159 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≤ 1 ∧ 1 ≠ 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)))
1918expd 245 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (1 ≠ 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))))
2010, 19syl7bi 154 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ≤ 1 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
219, 20sylbid 139 . . 3 (𝑁 ∈ ℕ0 → (𝑁 < 2 → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1))))
2221imp 115 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 ≠ 1 → (𝑁 = 0 ∨ 𝑁 = 1)))
23 zdceq 8314 . . . . 5 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑁 = 1)
243, 11, 23sylancl 392 . . . 4 (𝑁 ∈ ℕ0DECID 𝑁 = 1)
2524adantr 261 . . 3 ((𝑁 ∈ ℕ0𝑁 < 2) → DECID 𝑁 = 1)
26 dcne 2216 . . 3 (DECID 𝑁 = 1 ↔ (𝑁 = 1 ∨ 𝑁 ≠ 1))
2725, 26sylib 127 . 2 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 1 ∨ 𝑁 ≠ 1))
282, 22, 27mpjaod 638 1 ((𝑁 ∈ ℕ0𝑁 < 2) → (𝑁 = 0 ∨ 𝑁 = 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  DECID wdc 742   = wceq 1243  wcel 1393  wne 2204   class class class wbr 3764  (class class class)co 5512  0cc0 6887  1c1 6888   < clt 7058  cle 7059  cmin 7180  2c2 7962  0cn0 8179  cz 8243
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6973  ax-resscn 6974  ax-1cn 6975  ax-1re 6976  ax-icn 6977  ax-addcl 6978  ax-addrcl 6979  ax-mulcl 6980  ax-mulrcl 6981  ax-addcom 6982  ax-mulcom 6983  ax-addass 6984  ax-mulass 6985  ax-distr 6986  ax-i2m1 6987  ax-1rid 6989  ax-0id 6990  ax-rnegex 6991  ax-precex 6992  ax-cnre 6993  ax-pre-ltirr 6994  ax-pre-ltwlin 6995  ax-pre-lttrn 6996  ax-pre-apti 6997  ax-pre-ltadd 6998  ax-pre-mulgt0 6999
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-iltp 6566  df-enr 6809  df-nr 6810  df-ltr 6813  df-0r 6814  df-1r 6815  df-0 6894  df-1 6895  df-r 6897  df-lt 6900  df-pnf 7060  df-mnf 7061  df-xr 7062  df-ltxr 7063  df-le 7064  df-sub 7182  df-neg 7183  df-reap 7564  df-ap 7571  df-inn 7913  df-2 7971  df-n0 8180  df-z 8244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator