Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  breq2i GIF version

Theorem breq2i 3772
 Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996.)
Hypothesis
Ref Expression
breq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
breq2i (𝐶𝑅𝐴𝐶𝑅𝐵)

Proof of Theorem breq2i
StepHypRef Expression
1 breq1i.1 . 2 𝐴 = 𝐵
2 breq2 3768 . 2 (𝐴 = 𝐵 → (𝐶𝑅𝐴𝐶𝑅𝐵))
31, 2ax-mp 7 1 (𝐶𝑅𝐴𝐶𝑅𝐵)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   = wceq 1243   class class class wbr 3764 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765 This theorem is referenced by:  breqtri  3787  en1  6279  snnen2og  6322  caucvgprprlemval  6786  caucvgprprlemmu  6793  caucvgsr  6886  pitonnlem1  6921  lt0neg2  7464  le0neg2  7466  negap0  7620  recexaplem2  7633  recgt1  7863  crap0  7910  addltmul  8161  nn0lt10b  8321  nn0lt2  8322  xlt0neg2  8752  xle0neg2  8754  iccshftr  8862  iccshftl  8864  iccdil  8866  icccntr  8868  cjap0  9507  abs00ap  9660
 Copyright terms: Public domain W3C validator