Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqshft2 GIF version

Theorem iseqshft2 9232
 Description: Shifting the index set of a sequence. (Contributed by Jim Kingdon, 15-Aug-2021.)
Hypotheses
Ref Expression
iseqshft2.1 (𝜑𝑁 ∈ (ℤ𝑀))
iseqshft2.2 (𝜑𝐾 ∈ ℤ)
iseqshft2.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
iseqshft2.s (𝜑𝑆𝑉)
iseqshft2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqshft2.g ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
iseqshft2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqshft2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
Distinct variable groups:   𝑥, + ,𝑦   𝑘,𝐹,𝑥   𝑦,𝐹   𝑘,𝐺,𝑥   𝑦,𝐺   𝑘,𝐾,𝑥   𝑦,𝐾   𝑘,𝑀,𝑥   𝑦,𝑀   𝑘,𝑁,𝑥   𝑦,𝑁   𝑥,𝑆,𝑦   𝜑,𝑘,𝑥   𝜑,𝑦
Allowed substitution hints:   + (𝑘)   𝑆(𝑘)   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem iseqshft2
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqshft2.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 8896 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2100 . . . . . 6 (𝑤 = 𝑀 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 5178 . . . . . . 7 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
6 oveq1 5519 . . . . . . . 8 (𝑤 = 𝑀 → (𝑤 + 𝐾) = (𝑀 + 𝐾))
76fveq2d 5182 . . . . . . 7 (𝑤 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))
85, 7eqeq12d 2054 . . . . . 6 (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))
94, 8imbi12d 223 . . . . 5 (𝑤 = 𝑀 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))))
109imbi2d 219 . . . 4 (𝑤 = 𝑀 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))))
11 eleq1 2100 . . . . . 6 (𝑤 = 𝑛 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
12 fveq2 5178 . . . . . . 7 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
13 oveq1 5519 . . . . . . . 8 (𝑤 = 𝑛 → (𝑤 + 𝐾) = (𝑛 + 𝐾))
1413fveq2d 5182 . . . . . . 7 (𝑤 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))
1512, 14eqeq12d 2054 . . . . . 6 (𝑤 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))
1611, 15imbi12d 223 . . . . 5 (𝑤 = 𝑛 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))))
1716imbi2d 219 . . . 4 (𝑤 = 𝑛 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))))
18 eleq1 2100 . . . . . 6 (𝑤 = (𝑛 + 1) → (𝑤 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
19 fveq2 5178 . . . . . . 7 (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))
20 oveq1 5519 . . . . . . . 8 (𝑤 = (𝑛 + 1) → (𝑤 + 𝐾) = ((𝑛 + 1) + 𝐾))
2120fveq2d 5182 . . . . . . 7 (𝑤 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))
2219, 21eqeq12d 2054 . . . . . 6 (𝑤 = (𝑛 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))
2318, 22imbi12d 223 . . . . 5 (𝑤 = (𝑛 + 1) → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
2423imbi2d 219 . . . 4 (𝑤 = (𝑛 + 1) → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))))
25 eleq1 2100 . . . . . 6 (𝑤 = 𝑁 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
26 fveq2 5178 . . . . . . 7 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
27 oveq1 5519 . . . . . . . 8 (𝑤 = 𝑁 → (𝑤 + 𝐾) = (𝑁 + 𝐾))
2827fveq2d 5182 . . . . . . 7 (𝑤 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
2926, 28eqeq12d 2054 . . . . . 6 (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))
3025, 29imbi12d 223 . . . . 5 (𝑤 = 𝑁 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))))
3130imbi2d 219 . . . 4 (𝑤 = 𝑁 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))))
32 eluzfz1 8895 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
331, 32syl 14 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
34 iseqshft2.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
3534ralrimiva 2392 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
36 fveq2 5178 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
37 oveq1 5519 . . . . . . . . . . 11 (𝑘 = 𝑀 → (𝑘 + 𝐾) = (𝑀 + 𝐾))
3837fveq2d 5182 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
3936, 38eqeq12d 2054 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
4039rspcv 2652 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾))))
4133, 35, 40sylc 56 . . . . . . 7 (𝜑 → (𝐹𝑀) = (𝐺‘(𝑀 + 𝐾)))
42 eluzel2 8478 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
431, 42syl 14 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
44 iseqshft2.s . . . . . . . 8 (𝜑𝑆𝑉)
45 iseqshft2.f . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
46 iseqshft2.pl . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4743, 44, 45, 46iseq1 9222 . . . . . . 7 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
48 iseqshft2.2 . . . . . . . . 9 (𝜑𝐾 ∈ ℤ)
4943, 48zaddcld 8364 . . . . . . . 8 (𝜑 → (𝑀 + 𝐾) ∈ ℤ)
50 iseqshft2.g . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
5149, 44, 50, 46iseq1 9222 . . . . . . 7 (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾)))
5241, 47, 513eqtr4d 2082 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))
5352a1d 22 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))
5453a1i 9 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))))
55 peano2fzr 8901 . . . . . . . . . 10 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
5655adantl 262 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
5756expr 357 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
5857imim1d 69 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))))
59 oveq1 5519 . . . . . . . . . 10 ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
60 simprl 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
6144adantr 261 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑆𝑉)
6245adantlr 446 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6346adantlr 446 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6460, 61, 62, 63iseqp1 9225 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6548adantr 261 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ)
66 eluzadd 8501 . . . . . . . . . . . . . 14 ((𝑛 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
6760, 65, 66syl2anc 391 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
6850adantlr 446 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ‘(𝑀 + 𝐾))) → (𝐺𝑥) ∈ 𝑆)
6967, 61, 68, 63iseqp1 9225 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
70 eluzelz 8482 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7160, 70syl 14 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
72 zcn 8250 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
73 zcn 8250 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
74 ax-1cn 6977 . . . . . . . . . . . . . . . 16 1 ∈ ℂ
75 add32 7170 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7674, 75mp3an2 1220 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7772, 73, 76syl2an 273 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7871, 65, 77syl2anc 391 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1))
7978fveq2d 5182 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1)))
80 simprr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
8135adantr 261 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)))
82 fveq2 5178 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
83 oveq1 5519 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑛 + 1) → (𝑘 + 𝐾) = ((𝑛 + 1) + 𝐾))
8483fveq2d 5182 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾)))
8582, 84eqeq12d 2054 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
8685rspcv 2652 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺‘(𝑘 + 𝐾)) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))))
8780, 81, 86sylc 56 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))
8878fveq2d 5182 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1)))
8987, 88eqtrd 2072 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1)))
9089oveq2d 5528 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1))))
9169, 79, 903eqtr4d 2082 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))
9264, 91eqeq12d 2054 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))))
9359, 92syl5ibr 145 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))
9493expr 357 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
9594a2d 23 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
9658, 95syld 40 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))
9796expcom 109 . . . . 5 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))))
9897a2d 23 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))))
9910, 17, 24, 31, 54, 98uzind4 8531 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))))
1001, 99mpcom 32 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))
1013, 100mpd 13 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   = wceq 1243   ∈ wcel 1393  ∀wral 2306  ‘cfv 4902  (class class class)co 5512  ℂcc 6887  1c1 6890   + caddc 6892  ℤcz 8245  ℤ≥cuz 8473  ...cfz 8874  seqcseq 9211 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000 This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875  df-iseq 9212 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator