Step | Hyp | Ref
| Expression |
1 | | iseqshft2.1 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | eluzfz2 8896 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝑀...𝑁)) |
4 | | eleq1 2100 |
. . . . . 6
⊢ (𝑤 = 𝑀 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁))) |
5 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀)) |
6 | | oveq1 5519 |
. . . . . . . 8
⊢ (𝑤 = 𝑀 → (𝑤 + 𝐾) = (𝑀 + 𝐾)) |
7 | 6 | fveq2d 5182 |
. . . . . . 7
⊢ (𝑤 = 𝑀 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))) |
8 | 5, 7 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑤 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))) |
9 | 4, 8 | imbi12d 223 |
. . . . 5
⊢ (𝑤 = 𝑀 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))) |
10 | 9 | imbi2d 219 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))))) |
11 | | eleq1 2100 |
. . . . . 6
⊢ (𝑤 = 𝑛 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁))) |
12 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛)) |
13 | | oveq1 5519 |
. . . . . . . 8
⊢ (𝑤 = 𝑛 → (𝑤 + 𝐾) = (𝑛 + 𝐾)) |
14 | 13 | fveq2d 5182 |
. . . . . . 7
⊢ (𝑤 = 𝑛 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) |
15 | 12, 14 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑤 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))) |
16 | 11, 15 | imbi12d 223 |
. . . . 5
⊢ (𝑤 = 𝑛 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))) |
17 | 16 | imbi2d 219 |
. . . 4
⊢ (𝑤 = 𝑛 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))))) |
18 | | eleq1 2100 |
. . . . . 6
⊢ (𝑤 = (𝑛 + 1) → (𝑤 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁))) |
19 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) |
20 | | oveq1 5519 |
. . . . . . . 8
⊢ (𝑤 = (𝑛 + 1) → (𝑤 + 𝐾) = ((𝑛 + 1) + 𝐾)) |
21 | 20 | fveq2d 5182 |
. . . . . . 7
⊢ (𝑤 = (𝑛 + 1) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))) |
22 | 19, 21 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑤 = (𝑛 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))) |
23 | 18, 22 | imbi12d 223 |
. . . . 5
⊢ (𝑤 = (𝑛 + 1) → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
24 | 23 | imbi2d 219 |
. . . 4
⊢ (𝑤 = (𝑛 + 1) → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))) |
25 | | eleq1 2100 |
. . . . . 6
⊢ (𝑤 = 𝑁 → (𝑤 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁))) |
26 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)) |
27 | | oveq1 5519 |
. . . . . . . 8
⊢ (𝑤 = 𝑁 → (𝑤 + 𝐾) = (𝑁 + 𝐾)) |
28 | 27 | fveq2d 5182 |
. . . . . . 7
⊢ (𝑤 = 𝑁 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))) |
29 | 26, 28 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑤 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))) |
30 | 25, 29 | imbi12d 223 |
. . . . 5
⊢ (𝑤 = 𝑁 → ((𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾))) ↔ (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))) |
31 | 30 | imbi2d 219 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝜑 → (𝑤 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑤 + 𝐾)))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))))) |
32 | | eluzfz1 8895 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) |
33 | 1, 32 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
34 | | iseqshft2.3 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
35 | 34 | ralrimiva 2392 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
36 | | fveq2 5178 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) |
37 | | oveq1 5519 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑀 → (𝑘 + 𝐾) = (𝑀 + 𝐾)) |
38 | 37 | fveq2d 5182 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑀 → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
39 | 36, 38 | eqeq12d 2054 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾)))) |
40 | 39 | rspcv 2652 |
. . . . . . . 8
⊢ (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) → (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾)))) |
41 | 33, 35, 40 | sylc 56 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝑀) = (𝐺‘(𝑀 + 𝐾))) |
42 | | eluzel2 8478 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
43 | 1, 42 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
44 | | iseqshft2.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
45 | | iseqshft2.f |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
46 | | iseqshft2.pl |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
47 | 43, 44, 45, 46 | iseq1 9222 |
. . . . . . 7
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹‘𝑀)) |
48 | | iseqshft2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℤ) |
49 | 43, 48 | zaddcld 8364 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 + 𝐾) ∈ ℤ) |
50 | | iseqshft2.g |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) |
51 | 49, 44, 50, 46 | iseq1 9222 |
. . . . . . 7
⊢ (𝜑 → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)) = (𝐺‘(𝑀 + 𝐾))) |
52 | 41, 47, 51 | 3eqtr4d 2082 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))) |
53 | 52 | a1d 22 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾)))) |
54 | 53 | a1i 9 |
. . . 4
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑀 + 𝐾))))) |
55 | | peano2fzr 8901 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁)) |
56 | 55 | adantl 262 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁)) |
57 | 56 | expr 357 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁))) |
58 | 57 | imim1d 69 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))))) |
59 | | oveq1 5519 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))) |
60 | | simprl 483 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
61 | 44 | adantr 261 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑆 ∈ 𝑉) |
62 | 45 | adantlr 446 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
63 | 46 | adantlr 446 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
64 | 60, 61, 62, 63 | iseqp1 9225 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
65 | 48 | adantr 261 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝐾 ∈ ℤ) |
66 | | eluzadd 8501 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
67 | 60, 65, 66 | syl2anc 391 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 𝐾) ∈
(ℤ≥‘(𝑀 + 𝐾))) |
68 | 50 | adantlr 446 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 𝐾))) → (𝐺‘𝑥) ∈ 𝑆) |
69 | 67, 61, 68, 63 | iseqp1 9225 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
70 | | eluzelz 8482 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
71 | 60, 70 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ) |
72 | | zcn 8250 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
73 | | zcn 8250 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
74 | | ax-1cn 6977 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℂ |
75 | | add32 7170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℂ ∧ 1 ∈
ℂ ∧ 𝐾 ∈
ℂ) → ((𝑛 + 1) +
𝐾) = ((𝑛 + 𝐾) + 1)) |
76 | 74, 75 | mp3an2 1220 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
77 | 72, 73, 76 | syl2an 273 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
78 | 71, 65, 77 | syl2anc 391 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝑛 + 1) + 𝐾) = ((𝑛 + 𝐾) + 1)) |
79 | 78 | fveq2d 5182 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 𝐾) + 1))) |
80 | | simprr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
81 | 35 | adantr 261 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾))) |
82 | | fveq2 5178 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
83 | | oveq1 5519 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑛 + 1) → (𝑘 + 𝐾) = ((𝑛 + 1) + 𝐾)) |
84 | 83 | fveq2d 5182 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘(𝑘 + 𝐾)) = (𝐺‘((𝑛 + 1) + 𝐾))) |
85 | 82, 84 | eqeq12d 2054 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))) |
86 | 85 | rspcv 2652 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘(𝑘 + 𝐾)) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾)))) |
87 | 80, 81, 86 | sylc 56 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 1) + 𝐾))) |
88 | 78 | fveq2d 5182 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐺‘((𝑛 + 1) + 𝐾)) = (𝐺‘((𝑛 + 𝐾) + 1))) |
89 | 87, 88 | eqtrd 2072 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘((𝑛 + 𝐾) + 1))) |
90 | 89 | oveq2d 5528 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐺‘((𝑛 + 𝐾) + 1)))) |
91 | 69, 79, 90 | 3eqtr4d 2082 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1)))) |
92 | 64, 91 | eqeq12d 2054 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) + (𝐹‘(𝑛 + 1))))) |
93 | 59, 92 | syl5ibr 145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))) |
94 | 93 | expr 357 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
95 | 94 | a2d 23 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
96 | 58, 95 | syld 40 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾))))) |
97 | 96 | expcom 109 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾))) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))) |
98 | 97 | a2d 23 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑛 + 𝐾)))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘((𝑛 + 1) + 𝐾)))))) |
99 | 10, 17, 24, 31, 54, 98 | uzind4 8531 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))))) |
100 | 1, 99 | mpcom 32 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾)))) |
101 | 3, 100 | mpd 13 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq(𝑀 + 𝐾)( + , 𝐺, 𝑆)‘(𝑁 + 𝐾))) |