Step | Hyp | Ref
| Expression |
1 | | iseqfveq2.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
2 | | eluzfz2 8896 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ (𝐾...𝑁)) |
3 | 1, 2 | syl 14 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝐾...𝑁)) |
4 | | eleq1 2100 |
. . . . . 6
⊢ (𝑧 = 𝐾 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁))) |
5 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = 𝐾 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝐾)) |
6 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = 𝐾 → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)) |
7 | 5, 6 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑧 = 𝐾 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))) |
8 | 4, 7 | imbi12d 223 |
. . . . 5
⊢ (𝑧 = 𝐾 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)))) |
9 | 8 | imbi2d 219 |
. . . 4
⊢ (𝑧 = 𝐾 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))))) |
10 | | eleq1 2100 |
. . . . . 6
⊢ (𝑧 = 𝑤 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑤 ∈ (𝐾...𝑁))) |
11 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑤)) |
12 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) |
13 | 11, 12 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑧 = 𝑤 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))) |
14 | 10, 13 | imbi12d 223 |
. . . . 5
⊢ (𝑧 = 𝑤 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)))) |
15 | 14 | imbi2d 219 |
. . . 4
⊢ (𝑧 = 𝑤 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))))) |
16 | | eleq1 2100 |
. . . . . 6
⊢ (𝑧 = (𝑤 + 1) → (𝑧 ∈ (𝐾...𝑁) ↔ (𝑤 + 1) ∈ (𝐾...𝑁))) |
17 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = (𝑤 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1))) |
18 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = (𝑤 + 1) → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))) |
19 | 17, 18 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑧 = (𝑤 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))) |
20 | 16, 19 | imbi12d 223 |
. . . . 5
⊢ (𝑧 = (𝑤 + 1) → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))) |
21 | 20 | imbi2d 219 |
. . . 4
⊢ (𝑧 = (𝑤 + 1) → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))) |
22 | | eleq1 2100 |
. . . . . 6
⊢ (𝑧 = 𝑁 → (𝑧 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁))) |
23 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁)) |
24 | | fveq2 5178 |
. . . . . . 7
⊢ (𝑧 = 𝑁 → (seq𝐾( + , 𝐺, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)) |
25 | 23, 24 | eqeq12d 2054 |
. . . . . 6
⊢ (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧) ↔ (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))) |
26 | 22, 25 | imbi12d 223 |
. . . . 5
⊢ (𝑧 = 𝑁 → ((𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)))) |
27 | 26 | imbi2d 219 |
. . . 4
⊢ (𝑧 = 𝑁 → ((𝜑 → (𝑧 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))))) |
28 | | iseqfveq2.2 |
. . . . . . 7
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺‘𝐾)) |
29 | | iseqfveq2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
30 | | eluzelz 8482 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
31 | 29, 30 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
32 | | iseqfveq2.s |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
33 | | iseqfveq2.g |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
34 | | iseqfveq2.pl |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
35 | 31, 32, 33, 34 | iseq1 9222 |
. . . . . . 7
⊢ (𝜑 → (seq𝐾( + , 𝐺, 𝑆)‘𝐾) = (𝐺‘𝐾)) |
36 | 28, 35 | eqtr4d 2075 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)) |
37 | 36 | a1d 22 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾))) |
38 | 37 | a1i 9 |
. . . 4
⊢ (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (seq𝐾( + , 𝐺, 𝑆)‘𝐾)))) |
39 | | peano2fzr 8901 |
. . . . . . . . . 10
⊢ ((𝑤 ∈
(ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁)) → 𝑤 ∈ (𝐾...𝑁)) |
40 | 39 | adantl 262 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (𝐾...𝑁)) |
41 | 40 | expr 357 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑤 ∈ (𝐾...𝑁))) |
42 | 41 | imim1d 69 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)))) |
43 | | oveq1 5519 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1)))) |
44 | | simprl 483 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ≥‘𝐾)) |
45 | 29 | adantr 261 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝐾 ∈ (ℤ≥‘𝑀)) |
46 | | uztrn 8489 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑤 ∈ (ℤ≥‘𝑀)) |
47 | 44, 45, 46 | syl2anc 391 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑤 ∈ (ℤ≥‘𝑀)) |
48 | 32 | adantr 261 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑆 ∈ 𝑉) |
49 | | iseqfveq2.f |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
50 | 49 | adantlr 446 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
51 | 34 | adantlr 446 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
52 | 47, 48, 50, 51 | iseqp1 9225 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1)))) |
53 | 33 | adantlr 446 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) ∧ 𝑥 ∈ (ℤ≥‘𝐾)) → (𝐺‘𝑥) ∈ 𝑆) |
54 | 44, 48, 53, 51 | iseqp1 9225 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐺‘(𝑤 + 1)))) |
55 | | eluzp1p1 8498 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈
(ℤ≥‘𝐾) → (𝑤 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
56 | 55 | ad2antrl 459 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
57 | | elfzuz3 8887 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑤 + 1))) |
58 | 57 | ad2antll 460 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑤 + 1))) |
59 | | elfzuzb 8884 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑤 + 1) ∈
(ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑤 + 1)))) |
60 | 56, 58, 59 | sylanbrc 394 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝑤 + 1) ∈ ((𝐾 + 1)...𝑁)) |
61 | | iseqfveq2.4 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
62 | 61 | ralrimiva 2392 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
63 | 62 | adantr 261 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
64 | | fveq2 5178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑤 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑤 + 1))) |
65 | | fveq2 5178 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑤 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑤 + 1))) |
66 | 64, 65 | eqeq12d 2054 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑤 + 1) → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))) |
67 | 66 | rspcv 2652 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1)))) |
68 | 60, 63, 67 | sylc 56 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑤 + 1)) = (𝐺‘(𝑤 + 1))) |
69 | 68 | oveq2d 5528 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐺‘(𝑤 + 1)))) |
70 | 54, 69 | eqtr4d 2075 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1)))) |
71 | 52, 70 | eqeq12d 2054 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)) ↔ ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))) = ((seq𝐾( + , 𝐺, 𝑆)‘𝑤) + (𝐹‘(𝑤 + 1))))) |
72 | 43, 71 | syl5ibr 145 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑤 ∈ (ℤ≥‘𝐾) ∧ (𝑤 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))) |
73 | 72 | expr 357 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))) |
74 | 73 | a2d 23 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → (((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))) |
75 | 42, 74 | syld 40 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ (ℤ≥‘𝐾)) → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1))))) |
76 | 75 | expcom 109 |
. . . . 5
⊢ (𝑤 ∈
(ℤ≥‘𝐾) → (𝜑 → ((𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤)) → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))) |
77 | 76 | a2d 23 |
. . . 4
⊢ (𝑤 ∈
(ℤ≥‘𝐾) → ((𝜑 → (𝑤 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝐾( + , 𝐺, 𝑆)‘𝑤))) → (𝜑 → ((𝑤 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑤 + 1)) = (seq𝐾( + , 𝐺, 𝑆)‘(𝑤 + 1)))))) |
78 | 9, 15, 21, 27, 38, 77 | uzind4 8531 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)))) |
79 | 1, 78 | mpcom 32 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁))) |
80 | 3, 79 | mpd 13 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑁) = (seq𝐾( + , 𝐺, 𝑆)‘𝑁)) |