ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pn0sr GIF version

Theorem pn0sr 6854
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
pn0sr (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)

Proof of Theorem pn0sr
StepHypRef Expression
1 m1r 6835 . . . 4 -1RR
2 1sr 6834 . . . 4 1RR
3 distrsrg 6842 . . . 4 ((𝐴R ∧ -1RR ∧ 1RR) → (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R)))
41, 2, 3mp3an23 1224 . . 3 (𝐴R → (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R)))
5 m1p1sr 6843 . . . . 5 (-1R +R 1R) = 0R
65oveq2i 5523 . . . 4 (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R)
76a1i 9 . . 3 (𝐴R → (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R))
8 mulclsr 6837 . . . . 5 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
91, 8mpan2 401 . . . 4 (𝐴R → (𝐴 ·R -1R) ∈ R)
10 mulclsr 6837 . . . . 5 ((𝐴R ∧ 1RR) → (𝐴 ·R 1R) ∈ R)
112, 10mpan2 401 . . . 4 (𝐴R → (𝐴 ·R 1R) ∈ R)
12 addcomsrg 6838 . . . 4 (((𝐴 ·R -1R) ∈ R ∧ (𝐴 ·R 1R) ∈ R) → ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)))
139, 11, 12syl2anc 391 . . 3 (𝐴R → ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)))
144, 7, 133eqtr3d 2080 . 2 (𝐴R → (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)))
15 00sr 6852 . 2 (𝐴R → (𝐴 ·R 0R) = 0R)
16 1idsr 6851 . . 3 (𝐴R → (𝐴 ·R 1R) = 𝐴)
1716oveq1d 5527 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R)))
1814, 15, 173eqtr3rd 2081 1 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1243  wcel 1393  (class class class)co 5512  Rcnr 6393  0Rc0r 6394  1Rc1r 6395  -1Rcm1r 6396   +R cplr 6397   ·R cmr 6398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6400  df-pli 6401  df-mi 6402  df-lti 6403  df-plpq 6440  df-mpq 6441  df-enq 6443  df-nqqs 6444  df-plqqs 6445  df-mqqs 6446  df-1nqqs 6447  df-rq 6448  df-ltnqqs 6449  df-enq0 6520  df-nq0 6521  df-0nq0 6522  df-plq0 6523  df-mq0 6524  df-inp 6562  df-i1p 6563  df-iplp 6564  df-imp 6565  df-enr 6809  df-nr 6810  df-plr 6811  df-mr 6812  df-0r 6814  df-1r 6815  df-m1r 6816
This theorem is referenced by:  negexsr  6855  caucvgsrlemoffval  6878  axrnegex  6951
  Copyright terms: Public domain W3C validator