ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pn0sr Unicode version

Theorem pn0sr 6856
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
pn0sr  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )

Proof of Theorem pn0sr
StepHypRef Expression
1 m1r 6837 . . . 4  |-  -1R  e.  R.
2 1sr 6836 . . . 4  |-  1R  e.  R.
3 distrsrg 6844 . . . 4  |-  ( ( A  e.  R.  /\  -1R  e.  R.  /\  1R  e.  R. )  ->  ( A  .R  ( -1R  +R  1R ) )  =  ( ( A  .R  -1R )  +R  ( A  .R  1R ) ) )
41, 2, 3mp3an23 1224 . . 3  |-  ( A  e.  R.  ->  ( A  .R  ( -1R  +R  1R ) )  =  ( ( A  .R  -1R )  +R  ( A  .R  1R ) ) )
5 m1p1sr 6845 . . . . 5  |-  ( -1R 
+R  1R )  =  0R
65oveq2i 5523 . . . 4  |-  ( A  .R  ( -1R  +R  1R ) )  =  ( A  .R  0R )
76a1i 9 . . 3  |-  ( A  e.  R.  ->  ( A  .R  ( -1R  +R  1R ) )  =  ( A  .R  0R ) )
8 mulclsr 6839 . . . . 5  |-  ( ( A  e.  R.  /\  -1R  e.  R. )  -> 
( A  .R  -1R )  e.  R. )
91, 8mpan2 401 . . . 4  |-  ( A  e.  R.  ->  ( A  .R  -1R )  e. 
R. )
10 mulclsr 6839 . . . . 5  |-  ( ( A  e.  R.  /\  1R  e.  R. )  -> 
( A  .R  1R )  e.  R. )
112, 10mpan2 401 . . . 4  |-  ( A  e.  R.  ->  ( A  .R  1R )  e. 
R. )
12 addcomsrg 6840 . . . 4  |-  ( ( ( A  .R  -1R )  e.  R.  /\  ( A  .R  1R )  e. 
R. )  ->  (
( A  .R  -1R )  +R  ( A  .R  1R ) )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) ) )
139, 11, 12syl2anc 391 . . 3  |-  ( A  e.  R.  ->  (
( A  .R  -1R )  +R  ( A  .R  1R ) )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) ) )
144, 7, 133eqtr3d 2080 . 2  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  ( ( A  .R  1R )  +R  ( A  .R  -1R ) ) )
15 00sr 6854 . 2  |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
16 1idsr 6853 . . 3  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
1716oveq1d 5527 . 2  |-  ( A  e.  R.  ->  (
( A  .R  1R )  +R  ( A  .R  -1R ) )  =  ( A  +R  ( A  .R  -1R ) ) )
1814, 15, 173eqtr3rd 2081 1  |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393  (class class class)co 5512   R.cnr 6395   0Rc0r 6396   1Rc1r 6397   -1Rcm1r 6398    +R cplr 6399    .R cmr 6400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-imp 6567  df-enr 6811  df-nr 6812  df-plr 6813  df-mr 6814  df-0r 6816  df-1r 6817  df-m1r 6818
This theorem is referenced by:  negexsr  6857  caucvgsrlemoffval  6880  axrnegex  6953
  Copyright terms: Public domain W3C validator