ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlol GIF version

Theorem caucvgprlemlol 6768
Description: Lemma for caucvgpr 6780. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f (𝜑𝐹:NQ)
caucvgpr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <Q ((𝐹𝑘) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )) ∧ (𝐹𝑘) <Q ((𝐹𝑛) +Q (*Q‘[⟨𝑛, 1𝑜⟩] ~Q )))))
caucvgpr.bnd (𝜑 → ∀𝑗N 𝐴 <Q (𝐹𝑗))
caucvgpr.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
Assertion
Ref Expression
caucvgprlemlol ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Distinct variable groups:   𝐴,𝑗   𝐹,𝑙,𝑟,𝑠   𝑢,𝐹   𝑗,𝐿,𝑟,𝑠   𝑗,𝑙,𝑠   𝜑,𝑗,𝑟,𝑠   𝑢,𝑗,𝑟,𝑠
Allowed substitution hints:   𝜑(𝑢,𝑘,𝑛,𝑙)   𝐴(𝑢,𝑘,𝑛,𝑠,𝑟,𝑙)   𝐹(𝑗,𝑘,𝑛)   𝐿(𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgprlemlol
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 6463 . . . . 5 <Q ⊆ (Q × Q)
21brel 4392 . . . 4 (𝑠 <Q 𝑟 → (𝑠Q𝑟Q))
32simpld 105 . . 3 (𝑠 <Q 𝑟𝑠Q)
433ad2ant2 926 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠Q)
5 oveq1 5519 . . . . . . . 8 (𝑙 = 𝑟 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
65breq1d 3774 . . . . . . 7 (𝑙 = 𝑟 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
76rexbidv 2327 . . . . . 6 (𝑙 = 𝑟 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
8 caucvgpr.lim . . . . . . . 8 𝐿 = ⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩
98fveq2i 5181 . . . . . . 7 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩)
10 nqex 6461 . . . . . . . . 9 Q ∈ V
1110rabex 3901 . . . . . . . 8 {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)} ∈ V
1210rabex 3901 . . . . . . . 8 {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢} ∈ V
1311, 12op1st 5773 . . . . . . 7 (1st ‘⟨{𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}, {𝑢Q ∣ ∃𝑗N ((𝐹𝑗) +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q 𝑢}⟩) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
149, 13eqtri 2060 . . . . . 6 (1st𝐿) = {𝑙Q ∣ ∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)}
157, 14elrab2 2700 . . . . 5 (𝑟 ∈ (1st𝐿) ↔ (𝑟Q ∧ ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
1615simprbi 260 . . . 4 (𝑟 ∈ (1st𝐿) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
17163ad2ant3 927 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
18 simpll2 944 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → 𝑠 <Q 𝑟)
19 ltanqg 6498 . . . . . . . . 9 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
2019adantl 262 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
214ad2antrr 457 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → 𝑠Q)
222simprd 107 . . . . . . . . . 10 (𝑠 <Q 𝑟𝑟Q)
23223ad2ant2 926 . . . . . . . . 9 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑟Q)
2423ad2antrr 457 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → 𝑟Q)
25 simplr 482 . . . . . . . . 9 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → 𝑗N)
26 nnnq 6520 . . . . . . . . 9 (𝑗N → [⟨𝑗, 1𝑜⟩] ~QQ)
27 recclnq 6490 . . . . . . . . 9 ([⟨𝑗, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
2825, 26, 273syl 17 . . . . . . . 8 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ) ∈ Q)
29 addcomnqg 6479 . . . . . . . . 9 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 262 . . . . . . . 8 (((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3120, 21, 24, 28, 30caovord2d 5670 . . . . . . 7 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 <Q 𝑟 ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q ))))
3218, 31mpbid 135 . . . . . 6 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
33 ltsonq 6496 . . . . . . 7 <Q Or Q
3433, 1sotri 4720 . . . . . 6 (((𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
3532, 34sylancom 397 . . . . 5 ((((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) ∧ (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
3635ex 108 . . . 4 (((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) ∧ 𝑗N) → ((𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) → (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3736reximdva 2421 . . 3 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → (∃𝑗N (𝑟 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
3817, 37mpd 13 . 2 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗))
39 oveq1 5519 . . . . 5 (𝑙 = 𝑠 → (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) = (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )))
4039breq1d 3774 . . . 4 (𝑙 = 𝑠 → ((𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
4140rexbidv 2327 . . 3 (𝑙 = 𝑠 → (∃𝑗N (𝑙 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗) ↔ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
4241, 14elrab2 2700 . 2 (𝑠 ∈ (1st𝐿) ↔ (𝑠Q ∧ ∃𝑗N (𝑠 +Q (*Q‘[⟨𝑗, 1𝑜⟩] ~Q )) <Q (𝐹𝑗)))
434, 38, 42sylanbrc 394 1 ((𝜑𝑠 <Q 𝑟𝑟 ∈ (1st𝐿)) → 𝑠 ∈ (1st𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wcel 1393  wral 2306  wrex 2307  {crab 2310  cop 3378   class class class wbr 3764  wf 4898  cfv 4902  (class class class)co 5512  1st c1st 5765  1𝑜c1o 5994  [cec 6104  Ncnpi 6370   <N clti 6373   ~Q ceq 6377  Qcnq 6378   +Q cplq 6380  *Qcrq 6382   <Q cltq 6383
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451
This theorem is referenced by:  caucvgprlemrnd  6771
  Copyright terms: Public domain W3C validator