Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcegv | Unicode version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
spcgv.1 |
Ref | Expression |
---|---|
spcegv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2178 | . 2 | |
2 | nfv 1421 | . 2 | |
3 | spcgv.1 | . 2 | |
4 | 1, 2, 3 | spcegf 2636 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wceq 1243 wex 1381 wcel 1393 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 |
This theorem is referenced by: spcev 2647 eqeu 2711 absneu 3442 elunii 3585 axpweq 3924 euotd 3991 brcogw 4504 opeldmg 4540 breldmg 4541 dmsnopg 4792 dff3im 5312 elunirn 5405 unielxp 5800 op1steq 5805 tfr0 5937 tfrlemibxssdm 5941 tfrlemiex 5945 ertr 6121 f1oen3g 6234 f1dom2g 6236 f1domg 6238 dom3d 6254 en1 6279 phpelm 6328 ordiso 6358 recexnq 6488 ltexprlemrl 6708 ltexprlemru 6710 recexprlemm 6722 recexprlemloc 6729 recexprlem1ssl 6731 recexprlem1ssu 6732 frecuzrdgfn 9198 climeu 9817 bj-2inf 10062 |
Copyright terms: Public domain | W3C validator |