ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexnq Unicode version

Theorem recexnq 6488
Description: Existence of positive fraction reciprocal. (Contributed by Jim Kingdon, 20-Sep-2019.)
Assertion
Ref Expression
recexnq  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
Distinct variable group:    y, A

Proof of Theorem recexnq
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6446 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
2 oveq1 5519 . . . . 5  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( [ <. x ,  z >. ]  ~Q  .Q  y )  =  ( A  .Q  y ) )
32eqeq1d 2048 . . . 4  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q  <->  ( A  .Q  y )  =  1Q ) )
43anbi2d 437 . . 3  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( ( y  e. 
Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q )  <->  ( y  e.  Q.  /\  ( A  .Q  y )  =  1Q ) ) )
54exbidv 1706 . 2  |-  ( [
<. x ,  z >. ]  ~Q  =  A  -> 
( E. y ( y  e.  Q.  /\  ( [ <. x ,  z
>. ]  ~Q  .Q  y
)  =  1Q )  <->  E. y ( y  e. 
Q.  /\  ( A  .Q  y )  =  1Q ) ) )
6 opelxpi 4376 . . . . . 6  |-  ( ( z  e.  N.  /\  x  e.  N. )  -> 
<. z ,  x >.  e.  ( N.  X.  N. ) )
76ancoms 255 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  -> 
<. z ,  x >.  e.  ( N.  X.  N. ) )
8 enqex 6458 . . . . . 6  |-  ~Q  e.  _V
98ecelqsi 6160 . . . . 5  |-  ( <.
z ,  x >.  e.  ( N.  X.  N. )  ->  [ <. z ,  x >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
107, 9syl 14 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  [ <. z ,  x >. ]  ~Q  e.  ( ( N.  X.  N. ) /.  ~Q  ) )
1110, 1syl6eleqr 2131 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  [ <. z ,  x >. ]  ~Q  e.  Q. )
12 mulcompig 6429 . . . . . . 7  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  =  ( z  .N  x ) )
1312opeq2d 3556 . . . . . 6  |-  ( ( x  e.  N.  /\  z  e.  N. )  -> 
<. ( x  .N  z
) ,  ( x  .N  z ) >.  =  <. ( x  .N  z ) ,  ( z  .N  x )
>. )
1413eceq1d 6142 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  [ <. ( x  .N  z ) ,  ( x  .N  z )
>. ]  ~Q  =  [ <. ( x  .N  z
) ,  ( z  .N  x ) >. ]  ~Q  )
15 mulclpi 6426 . . . . . 6  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( x  .N  z
)  e.  N. )
16 1qec 6486 . . . . . 6  |-  ( ( x  .N  z )  e.  N.  ->  1Q  =  [ <. ( x  .N  z ) ,  ( x  .N  z )
>. ]  ~Q  )
1715, 16syl 14 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  1Q  =  [ <. ( x  .N  z ) ,  ( x  .N  z ) >. ]  ~Q  )
18 mulpipqqs 6471 . . . . . . 7  |-  ( ( ( x  e.  N.  /\  z  e.  N. )  /\  ( z  e.  N.  /\  x  e.  N. )
)  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( z  .N  x ) >. ]  ~Q  )
1918an42s 523 . . . . . 6  |-  ( ( ( x  e.  N.  /\  z  e.  N. )  /\  ( x  e.  N.  /\  z  e.  N. )
)  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  [ <. (
x  .N  z ) ,  ( z  .N  x ) >. ]  ~Q  )
2019anidms 377 . . . . 5  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  [ <. ( x  .N  z ) ,  ( z  .N  x )
>. ]  ~Q  )
2114, 17, 203eqtr4rd 2083 . . . 4  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q )
2211, 21jca 290 . . 3  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  ( [ <. z ,  x >. ]  ~Q  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q ) )
23 eleq1 2100 . . . . 5  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( y  e.  Q.  <->  [ <. z ,  x >. ]  ~Q  e.  Q. ) )
24 oveq2 5520 . . . . . 6  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( [ <. x ,  z
>. ]  ~Q  .Q  y
)  =  ( [
<. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  ) )
2524eqeq1d 2048 . . . . 5  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q  <->  ( [ <. x ,  z
>. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q ) )
2623, 25anbi12d 442 . . . 4  |-  ( y  =  [ <. z ,  x >. ]  ~Q  ->  ( ( y  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q )  <->  ( [ <. z ,  x >. ]  ~Q  e.  Q.  /\  ( [
<. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q )
) )
2726spcegv 2641 . . 3  |-  ( [
<. z ,  x >. ]  ~Q  e.  Q.  ->  ( ( [ <. z ,  x >. ]  ~Q  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  [ <. z ,  x >. ]  ~Q  )  =  1Q )  ->  E. y
( y  e.  Q.  /\  ( [ <. x ,  z >. ]  ~Q  .Q  y )  =  1Q ) ) )
2811, 22, 27sylc 56 . 2  |-  ( ( x  e.  N.  /\  z  e.  N. )  ->  E. y ( y  e.  Q.  /\  ( [ <. x ,  z
>. ]  ~Q  .Q  y
)  =  1Q ) )
291, 5, 28ecoptocl 6193 1  |-  ( A  e.  Q.  ->  E. y
( y  e.  Q.  /\  ( A  .Q  y
)  =  1Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   <.cop 3378    X. cxp 4343  (class class class)co 5512   [cec 6104   /.cqs 6105   N.cnpi 6370    .N cmi 6372    ~Q ceq 6377   Q.cnq 6378   1Qc1q 6379    .Q cmq 6381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-mqqs 6448  df-1nqqs 6449
This theorem is referenced by:  recmulnqg  6489  recclnq  6490
  Copyright terms: Public domain W3C validator