ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiex Unicode version

Theorem tfrlemiex 5945
Description: Lemma for tfrlemi1 5946. (Contributed by Jim Kingdon, 18-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemiex  |-  ( ph  ->  E. f ( f  Fn  x  /\  A. u  e.  x  (
f `  u )  =  ( F `  ( f  |`  u
) ) ) )
Distinct variable groups:    f, g, h, u, w, x, y, z, A    f, F, g, h, u, w, x, y, z    ph, w, y    u, B, w, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, u, f)    B( x, y)

Proof of Theorem tfrlemiex
StepHypRef Expression
1 tfrlemisucfn.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 tfrlemisucfn.2 . . . 4  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
3 tfrlemi1.3 . . . 4  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
4 tfrlemi1.4 . . . 4  |-  ( ph  ->  x  e.  On )
5 tfrlemi1.5 . . . 4  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
61, 2, 3, 4, 5tfrlemibex 5943 . . 3  |-  ( ph  ->  B  e.  _V )
7 uniexg 4175 . . 3  |-  ( B  e.  _V  ->  U. B  e.  _V )
86, 7syl 14 . 2  |-  ( ph  ->  U. B  e.  _V )
91, 2, 3, 4, 5tfrlemibfn 5942 . . 3  |-  ( ph  ->  U. B  Fn  x
)
101, 2, 3, 4, 5tfrlemiubacc 5944 . . 3  |-  ( ph  ->  A. u  e.  x  ( U. B `  u
)  =  ( F `
 ( U. B  |`  u ) ) )
119, 10jca 290 . 2  |-  ( ph  ->  ( U. B  Fn  x  /\  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u ) ) ) )
12 fneq1 4987 . . . 4  |-  ( f  =  U. B  -> 
( f  Fn  x  <->  U. B  Fn  x ) )
13 fveq1 5177 . . . . . 6  |-  ( f  =  U. B  -> 
( f `  u
)  =  ( U. B `  u )
)
14 reseq1 4606 . . . . . . 7  |-  ( f  =  U. B  -> 
( f  |`  u
)  =  ( U. B  |`  u ) )
1514fveq2d 5182 . . . . . 6  |-  ( f  =  U. B  -> 
( F `  (
f  |`  u ) )  =  ( F `  ( U. B  |`  u
) ) )
1613, 15eqeq12d 2054 . . . . 5  |-  ( f  =  U. B  -> 
( ( f `  u )  =  ( F `  ( f  |`  u ) )  <->  ( U. B `  u )  =  ( F `  ( U. B  |`  u
) ) ) )
1716ralbidv 2326 . . . 4  |-  ( f  =  U. B  -> 
( A. u  e.  x  ( f `  u )  =  ( F `  ( f  |`  u ) )  <->  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u
) ) ) )
1812, 17anbi12d 442 . . 3  |-  ( f  =  U. B  -> 
( ( f  Fn  x  /\  A. u  e.  x  ( f `  u )  =  ( F `  ( f  |`  u ) ) )  <-> 
( U. B  Fn  x  /\  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u ) ) ) ) )
1918spcegv 2641 . 2  |-  ( U. B  e.  _V  ->  ( ( U. B  Fn  x  /\  A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u ) ) )  ->  E. f
( f  Fn  x  /\  A. u  e.  x  ( f `  u
)  =  ( F `
 ( f  |`  u ) ) ) ) )
208, 11, 19sylc 56 1  |-  ( ph  ->  E. f ( f  Fn  x  /\  A. u  e.  x  (
f `  u )  =  ( F `  ( f  |`  u
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   _Vcvv 2557    u. cun 2915   {csn 3375   <.cop 3378   U.cuni 3580   Oncon0 4100    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920
This theorem is referenced by:  tfrlemi1  5946
  Copyright terms: Public domain W3C validator