Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunii Structured version   Unicode version

Theorem elunii 3548
 Description: Membership in class union. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
elunii

Proof of Theorem elunii
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eleq2 2074 . . . . 5
2 eleq1 2073 . . . . 5
31, 2anbi12d 442 . . . 4
43spcegv 2609 . . 3
54anabsi7 500 . 2
6 eluni 3546 . 2
75, 6sylibr 137 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wceq 1223  wex 1354   wcel 1366  cuni 3543 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 614  ax-5 1309  ax-7 1310  ax-gen 1311  ax-ie1 1355  ax-ie2 1356  ax-8 1368  ax-10 1369  ax-11 1370  ax-i12 1371  ax-bnd 1372  ax-4 1373  ax-17 1392  ax-i9 1396  ax-ial 1400  ax-i5r 1401  ax-ext 1995 This theorem depends on definitions:  df-bi 110  df-tru 1226  df-nf 1323  df-sb 1619  df-clab 2000  df-cleq 2006  df-clel 2009  df-nfc 2140  df-v 2528  df-uni 3544 This theorem is referenced by:  ssuni  3565  unipw  3916  opeluu  4120  sucunielr  4173  unon  4174  ordunisuc2r  4177  tfrlemibxssdm  5850
 Copyright terms: Public domain W3C validator