ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dom3d Unicode version

Theorem dom3d 6254
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2d.1  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
dom2d.2  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
dom3d.3  |-  ( ph  ->  A  e.  V )
dom3d.4  |-  ( ph  ->  B  e.  W )
Assertion
Ref Expression
dom3d  |-  ( ph  ->  A  ~<_  B )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)    V( x, y)    W( x, y)

Proof of Theorem dom3d
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dom2d.1 . . . . . 6  |-  ( ph  ->  ( x  e.  A  ->  C  e.  B ) )
2 dom2d.2 . . . . . 6  |-  ( ph  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( C  =  D  <->  x  =  y ) ) )
31, 2dom2lem 6252 . . . . 5  |-  ( ph  ->  ( x  e.  A  |->  C ) : A -1-1-> B )
4 f1f 5092 . . . . 5  |-  ( ( x  e.  A  |->  C ) : A -1-1-> B  ->  ( x  e.  A  |->  C ) : A --> B )
53, 4syl 14 . . . 4  |-  ( ph  ->  ( x  e.  A  |->  C ) : A --> B )
6 dom3d.3 . . . 4  |-  ( ph  ->  A  e.  V )
7 dom3d.4 . . . 4  |-  ( ph  ->  B  e.  W )
8 fex2 5059 . . . 4  |-  ( ( ( x  e.  A  |->  C ) : A --> B  /\  A  e.  V  /\  B  e.  W
)  ->  ( x  e.  A  |->  C )  e.  _V )
95, 6, 7, 8syl3anc 1135 . . 3  |-  ( ph  ->  ( x  e.  A  |->  C )  e.  _V )
10 f1eq1 5087 . . . 4  |-  ( z  =  ( x  e.  A  |->  C )  -> 
( z : A -1-1-> B  <-> 
( x  e.  A  |->  C ) : A -1-1-> B ) )
1110spcegv 2641 . . 3  |-  ( ( x  e.  A  |->  C )  e.  _V  ->  ( ( x  e.  A  |->  C ) : A -1-1-> B  ->  E. z  z : A -1-1-> B ) )
129, 3, 11sylc 56 . 2  |-  ( ph  ->  E. z  z : A -1-1-> B )
13 brdomg 6229 . . 3  |-  ( B  e.  W  ->  ( A  ~<_  B  <->  E. z 
z : A -1-1-> B
) )
147, 13syl 14 . 2  |-  ( ph  ->  ( A  ~<_  B  <->  E. z 
z : A -1-1-> B
) )
1512, 14mpbird 156 1  |-  ( ph  ->  A  ~<_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   class class class wbr 3764    |-> cmpt 3818   -->wf 4898   -1-1->wf1 4899    ~<_ cdom 6220
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fv 4910  df-dom 6223
This theorem is referenced by:  dom3  6256  xpdom2  6305  fopwdom  6310
  Copyright terms: Public domain W3C validator