ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirn Unicode version

Theorem elunirn 5405
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem elunirn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3583 . 2  |-  ( A  e.  U. ran  F  <->  E. y ( A  e.  y  /\  y  e. 
ran  F ) )
2 funfn 4931 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
3 fvelrnb 5221 . . . . . . . 8  |-  ( F  Fn  dom  F  -> 
( y  e.  ran  F  <->  E. x  e.  dom  F ( F `  x
)  =  y ) )
42, 3sylbi 114 . . . . . . 7  |-  ( Fun 
F  ->  ( y  e.  ran  F  <->  E. x  e.  dom  F ( F `
 x )  =  y ) )
54anbi2d 437 . . . . . 6  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <-> 
( A  e.  y  /\  E. x  e. 
dom  F ( F `
 x )  =  y ) ) )
6 r19.42v 2467 . . . . . 6  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  <->  ( A  e.  y  /\  E. x  e.  dom  F ( F `
 x )  =  y ) )
75, 6syl6bbr 187 . . . . 5  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <->  E. x  e.  dom  F ( A  e.  y  /\  ( F `  x )  =  y ) ) )
8 eleq2 2101 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  ( A  e.  ( F `  x )  <->  A  e.  y ) )
98biimparc 283 . . . . . 6  |-  ( ( A  e.  y  /\  ( F `  x )  =  y )  ->  A  e.  ( F `  x ) )
109reximi 2416 . . . . 5  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  ->  E. x  e.  dom  F  A  e.  ( F `  x
) )
117, 10syl6bi 152 . . . 4  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
1211exlimdv 1700 . . 3  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
13 fvelrn 5298 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
14 funfvex 5192 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
15 eleq2 2101 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  ( A  e.  y  <->  A  e.  ( F `  x ) ) )
16 eleq1 2100 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  ran  F  <->  ( F `  x )  e.  ran  F ) )
1715, 16anbi12d 442 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
( A  e.  y  /\  y  e.  ran  F )  <->  ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F ) ) )
1817spcegv 2641 . . . . . 6  |-  ( ( F `  x )  e.  _V  ->  (
( A  e.  ( F `  x )  /\  ( F `  x )  e.  ran  F )  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
1914, 18syl 14 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F )  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2013, 19mpan2d 404 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( A  e.  ( F `  x )  ->  E. y ( A  e.  y  /\  y  e.  ran  F ) ) )
2120rexlimdva 2433 . . 3  |-  ( Fun 
F  ->  ( E. x  e.  dom  F  A  e.  ( F `  x
)  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2212, 21impbid 120 . 2  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
231, 22syl5bb 181 1  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   E.wrex 2307   _Vcvv 2557   U.cuni 3580   dom cdm 4345   ran crn 4346   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  fnunirn  5406
  Copyright terms: Public domain W3C validator