ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 Unicode version

Theorem en1 6279
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Distinct variable group:    x, A

Proof of Theorem en1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 df1o2 6013 . . . . 5  |-  1o  =  { (/) }
21breq2i 3772 . . . 4  |-  ( A 
~~  1o  <->  A  ~~  { (/) } )
3 bren 6228 . . . 4  |-  ( A 
~~  { (/) }  <->  E. f 
f : A -1-1-onto-> { (/) } )
42, 3bitri 173 . . 3  |-  ( A 
~~  1o  <->  E. f  f : A -1-1-onto-> { (/) } )
5 f1ocnv 5139 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  `' f : { (/) } -1-1-onto-> A )
6 f1ofo 5133 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } -onto-> A )
7 forn 5109 . . . . . . . 8  |-  ( `' f : { (/) }
-onto-> A  ->  ran  `' f  =  A )
86, 7syl 14 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  A )
9 f1of 5126 . . . . . . . . . 10  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f : { (/) } --> A )
10 0ex 3884 . . . . . . . . . . . 12  |-  (/)  e.  _V
1110fsn2 5337 . . . . . . . . . . 11  |-  ( `' f : { (/) } --> A  <->  ( ( `' f `  (/) )  e.  A  /\  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } ) )
1211simprbi 260 . . . . . . . . . 10  |-  ( `' f : { (/) } --> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
139, 12syl 14 . . . . . . . . 9  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  =  { <. (/) ,  ( `' f `  (/) ) >. } )
1413rneqd 4563 . . . . . . . 8  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  ran  { <. (/) ,  ( `' f `  (/) ) >. } )
1510rnsnop 4801 . . . . . . . 8  |-  ran  { <.
(/) ,  ( `' f `  (/) ) >. }  =  { ( `' f `  (/) ) }
1614, 15syl6eq 2088 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ran  `' f  =  { ( `' f `
 (/) ) } )
178, 16eqtr3d 2074 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  A  =  {
( `' f `  (/) ) } )
185, 17syl 14 . . . . 5  |-  ( f : A -1-1-onto-> { (/) }  ->  A  =  { ( `' f `
 (/) ) } )
19 f1ofn 5127 . . . . . . 7  |-  ( `' f : { (/) } -1-1-onto-> A  ->  `' f  Fn 
{ (/) } )
2010snid 3402 . . . . . . 7  |-  (/)  e.  { (/)
}
21 funfvex 5192 . . . . . . . 8  |-  ( ( Fun  `' f  /\  (/) 
e.  dom  `' f
)  ->  ( `' f `  (/) )  e. 
_V )
2221funfni 4999 . . . . . . 7  |-  ( ( `' f  Fn  { (/) }  /\  (/)  e.  { (/) } )  ->  ( `' f `  (/) )  e. 
_V )
2319, 20, 22sylancl 392 . . . . . 6  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( `' f `
 (/) )  e.  _V )
24 sneq 3386 . . . . . . . 8  |-  ( x  =  ( `' f `
 (/) )  ->  { x }  =  { ( `' f `  (/) ) } )
2524eqeq2d 2051 . . . . . . 7  |-  ( x  =  ( `' f `
 (/) )  ->  ( A  =  { x } 
<->  A  =  { ( `' f `  (/) ) } ) )
2625spcegv 2641 . . . . . 6  |-  ( ( `' f `  (/) )  e. 
_V  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
2723, 26syl 14 . . . . 5  |-  ( `' f : { (/) } -1-1-onto-> A  ->  ( A  =  { ( `' f `
 (/) ) }  ->  E. x  A  =  {
x } ) )
285, 18, 27sylc 56 . . . 4  |-  ( f : A -1-1-onto-> { (/) }  ->  E. x  A  =  { x } )
2928exlimiv 1489 . . 3  |-  ( E. f  f : A -1-1-onto-> { (/)
}  ->  E. x  A  =  { x } )
304, 29sylbi 114 . 2  |-  ( A 
~~  1o  ->  E. x  A  =  { x } )
31 vex 2560 . . . . 5  |-  x  e. 
_V
3231ensn1 6276 . . . 4  |-  { x }  ~~  1o
33 breq1 3767 . . . 4  |-  ( A  =  { x }  ->  ( A  ~~  1o  <->  { x }  ~~  1o ) )
3432, 33mpbiri 157 . . 3  |-  ( A  =  { x }  ->  A  ~~  1o )
3534exlimiv 1489 . 2  |-  ( E. x  A  =  {
x }  ->  A  ~~  1o )
3630, 35impbii 117 1  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   (/)c0 3224   {csn 3375   <.cop 3378   class class class wbr 3764   `'ccnv 4344   ran crn 4346    Fn wfn 4897   -->wf 4898   -onto->wfo 4900   -1-1-onto->wf1o 4901   ` cfv 4902   1oc1o 5994    ~~ cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-1o 6001  df-en 6222
This theorem is referenced by:  en1bg  6280  reuen1  6281
  Copyright terms: Public domain W3C validator