Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > en1bg | Unicode version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
en1bg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en1 6279 | . . 3 | |
2 | id 19 | . . . . 5 | |
3 | unieq 3589 | . . . . . . 7 | |
4 | vex 2560 | . . . . . . . 8 | |
5 | 4 | unisn 3596 | . . . . . . 7 |
6 | 3, 5 | syl6eq 2088 | . . . . . 6 |
7 | 6 | sneqd 3388 | . . . . 5 |
8 | 2, 7 | eqtr4d 2075 | . . . 4 |
9 | 8 | exlimiv 1489 | . . 3 |
10 | 1, 9 | sylbi 114 | . 2 |
11 | uniexg 4175 | . . . 4 | |
12 | ensn1g 6277 | . . . 4 | |
13 | 11, 12 | syl 14 | . . 3 |
14 | breq1 3767 | . . 3 | |
15 | 13, 14 | syl5ibrcom 146 | . 2 |
16 | 10, 15 | impbid2 131 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wceq 1243 wex 1381 wcel 1393 cvv 2557 csn 3375 cuni 3580 class class class wbr 3764 c1o 5994 cen 6219 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-v 2559 df-sbc 2765 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-id 4030 df-suc 4108 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-1o 6001 df-en 6222 |
This theorem is referenced by: en1uniel 6284 |
Copyright terms: Public domain | W3C validator |