Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Unicode version

Theorem df1o2 6013
 Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 6001 . 2
2 suc0 4148 . 2
31, 2eqtri 2060 1
 Colors of variables: wff set class Syntax hints:   wceq 1243  c0 3224  csn 3375   csuc 4102  c1o 5994 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-dif 2920  df-un 2922  df-nul 3225  df-suc 4108  df-1o 6001 This theorem is referenced by:  df2o3  6014  df2o2  6015  1n0  6016  el1o  6020  dif1o  6021  ensn1  6276  en1  6279  xp1en  6297
 Copyright terms: Public domain W3C validator