| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > suc0 | Unicode version | ||
| Description: The successor of the empty set. (Contributed by NM, 1-Feb-2005.) |
| Ref | Expression |
|---|---|
| suc0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4108 |
. 2
| |
| 2 | uncom 3087 |
. 2
| |
| 3 | un0 3251 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtri 2064 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
| This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-dif 2920 df-un 2922 df-nul 3225 df-suc 4108 |
| This theorem is referenced by: ordtriexmidlem 4245 ordtri2orexmid 4248 2ordpr 4249 onsucsssucexmid 4252 onsucelsucexmid 4255 ordsoexmid 4286 ordtri2or2exmid 4296 nnregexmid 4342 tfr0 5937 df1o2 6013 |
| Copyright terms: Public domain | W3C validator |