![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1n0 | Unicode version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 6013 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0ex 3884 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | snnz 3487 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqnetri 2228 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-nul 3883 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-v 2559 df-dif 2920 df-un 2922 df-nul 3225 df-sn 3381 df-suc 4108 df-1o 6001 |
This theorem is referenced by: xp01disj 6017 1pi 6413 |
Copyright terms: Public domain | W3C validator |