Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Structured version   GIF version

Theorem df1o2 5952
 Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1𝑜 = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 5940 . 2 1𝑜 = suc ∅
2 suc0 4114 . 2 suc ∅ = {∅}
31, 2eqtri 2057 1 1𝑜 = {∅}
 Colors of variables: wff set class Syntax hints:   = wceq 1242  ∅c0 3218  {csn 3367  suc csuc 4068  1𝑜c1o 5933 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-dif 2914  df-un 2916  df-nul 3219  df-suc 4074  df-1o 5940 This theorem is referenced by:  df2o3  5953  df2o2  5954  1n0  5955  el1o  5959  dif1o  5960  ensn1  6212  en1  6215  xp1en  6233
 Copyright terms: Public domain W3C validator