ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df1o2 Structured version   GIF version

Theorem df1o2 5928
Description: Expanded value of the ordinal number 1. (Contributed by NM, 4-Nov-2002.)
Assertion
Ref Expression
df1o2 1𝑜 = {∅}

Proof of Theorem df1o2
StepHypRef Expression
1 df-1o 5916 . 2 1𝑜 = suc ∅
2 suc0 4097 . 2 suc ∅ = {∅}
31, 2eqtri 2042 1 1𝑜 = {∅}
Colors of variables: wff set class
Syntax hints:   = wceq 1228  c0 3201  {csn 3350  suc csuc 4051  1𝑜c1o 5909
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-dif 2897  df-un 2899  df-nul 3202  df-suc 4057  df-1o 5916
This theorem is referenced by:  df2o3  5929  df2o2  5930  1n0  5931  el1o  5935  dif1o  5936
  Copyright terms: Public domain W3C validator