ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 GIF version

Theorem en1 6279
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 6013 . . . . 5 1𝑜 = {∅}
21breq2i 3772 . . . 4 (𝐴 ≈ 1𝑜𝐴 ≈ {∅})
3 bren 6228 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 173 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 5139 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 5133 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 5109 . . . . . . . 8 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 14 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 5126 . . . . . . . . . 10 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 3884 . . . . . . . . . . . 12 ∅ ∈ V
1110fsn2 5337 . . . . . . . . . . 11 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 260 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 14 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 4563 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 4801 . . . . . . . 8 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15syl6eq 2088 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2074 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
185, 17syl 14 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝐴 = {(𝑓‘∅)})
19 f1ofn 5127 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓 Fn {∅})
2010snid 3402 . . . . . . 7 ∅ ∈ {∅}
21 funfvex 5192 . . . . . . . 8 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (𝑓‘∅) ∈ V)
2221funfni 4999 . . . . . . 7 ((𝑓 Fn {∅} ∧ ∅ ∈ {∅}) → (𝑓‘∅) ∈ V)
2319, 20, 22sylancl 392 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → (𝑓‘∅) ∈ V)
24 sneq 3386 . . . . . . . 8 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2524eqeq2d 2051 . . . . . . 7 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2625spcegv 2641 . . . . . 6 ((𝑓‘∅) ∈ V → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
2723, 26syl 14 . . . . 5 (𝑓:{∅}–1-1-onto𝐴 → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
285, 18, 27sylc 56 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2928exlimiv 1489 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
304, 29sylbi 114 . 2 (𝐴 ≈ 1𝑜 → ∃𝑥 𝐴 = {𝑥})
31 vex 2560 . . . . 5 𝑥 ∈ V
3231ensn1 6276 . . . 4 {𝑥} ≈ 1𝑜
33 breq1 3767 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1𝑜 ↔ {𝑥} ≈ 1𝑜))
3432, 33mpbiri 157 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1𝑜)
3534exlimiv 1489 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1𝑜)
3630, 35impbii 117 1 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98   = wceq 1243  wex 1381  wcel 1393  Vcvv 2557  c0 3224  {csn 3375  cop 3378   class class class wbr 3764  ccnv 4344  ran crn 4346   Fn wfn 4897  wf 4898  ontowfo 4900  1-1-ontowf1o 4901  cfv 4902  1𝑜c1o 5994  cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-1o 6001  df-en 6222
This theorem is referenced by:  en1bg  6280  reuen1  6281
  Copyright terms: Public domain W3C validator